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Abstract:
Traditional epistemology of knowledge and belief can be succinctly characterized 
as justified true belief (JTB) epistemology, namely by the thesis that knowledge 
is justified true belief, i.e., K = JTB. Since Gettier’s (1963) classical paper, JTB-
epistemology has come under heavy attack. The aim of this paper is to study 
JTB-epistemology and Gettier’s criticism of it in the framework of topological 
epistemic logic. In this topological framework, Gettier situations, for which 
knowledge does not coincide with true justified belief, occur for formal reasons, 
i.e., there are models for which K ≠ JTB. On the other hand, topological logic 
offers natural models of JTB, i.e., models for which knowledge coincides with 
true justified belief. Moreover, for every model of Stalnaker’s “combined logic 
KB of knowledge and belief” a canonical JTB model (its JTB doppelganger) can 
be constructed that is free of Gettier situations. In brief, the traditional JTB-
epistemology can be shown to be a simplification of a more complex 
epistemological account of knowledge and justified true belief that assumes that 
these two concepts may differ. Further, for all models of Stalnaker’s KB-logic, 
Gettier situations turn out to be topologically exceptional events in a precise 
sense, i.e., they are nowhere dense situations. This entails that Gettier situations 
are doxastically and epistemologically invisible in the sense that they can be 
neither known nor believed with respect to the knowledge operator and the 
belief operator of the models involved. In sum, the version of topological 
epistemic logic presented in this paper leads to a partial rehabilitation of the 
traditional JTB-account: Gettier situations, where knowledge does not coincide 
with justified true belief, are characterized topologically as anomalies or 
exceptional situations. On the other hand, Gettier situations necessarily occur 
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for most universes of possible worlds. Only for a special subclass of universes 
(epistemically characterized by a rather strong concept of knowledge and 
topologically characterized as the class of nodec spaces) can Gettier situations 
be avoided completely. This description amounts to the thesis that, in general, 
JTB-epistemology is false. JTB remains correct, however, for a special class of 
universes of possible worlds, namely, nodec spaces. Moreover, in a precise 
topological sense, any topological space whatsoever can be shown to be “almost” 
a nodec space. This fact renders the assertion plausible that the classical JTB 
account is “almost correct.”

Keywords:
Topological epistemic logic, JTB-epistemology, Gettier problem, Justified 
belief, Epistemic and doxastic invisibility

1. Introduction

 The use of formal, often mathematical, models is ubiquitous in the natural and social 

sciences. There is no reason why in philosophy, understood as a science in a broad sense, this 

should not be the case. At least, it should be the case for analytic philosophy, conceived in a 

broad sense. According to Williamson: 

The aim of using models is to gain insight into phenomena by studying how they work 
under simplified, rigorously described conditions that enable us to apply mathematical 
or quasi-mathematical reasoning that we cannot apply directly to the phenomena in the 
wild. (Williamson (2013), p. 131) 

 Using mathematical models or other kinds of formal models in philosophy is not, of course, 

a foolproof method for obtaining philosophically interesting results. Rather, a philosophy that 

employs those formal methods is always in danger of indulging in mere mathematical window-

dressing in order to appear “scientific” without substantial philosophical content. This is a 

classical problem of any mathematical (and more generally formal) philosophy. One of the 

founding fathers of this philosophical current was already aware of this:

The acceptance or rejection of abstract linguistic forms, just as the acceptance or 
rejection of any other linguistic forms in any branch of science, will finally be decided 
by their efficiency as instruments, the ratio of the results achieved to the amount and 
complexity of the efforts required. (Carnap (1950), p. 40)
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 The aim of this paper is to investigate the fundamental epistemological problem of “What 

is knowledge?,” put again on the agenda of modern epistemology by Gettier’s (1963) classical 

paper, by using the conceptual tools of topological epistemic logic.1 

 The topological interpretation of modal operators is one of the oldest semantics for modal 

languages (cf. Aiello et al. (2007)), going back to the trailblazing paper of McKinsey and 

Tarski (1944). The perhaps more widely used Kripke semantics of S4 is just a special case of 

topological semantics. Or, reversely, for S4 the topological semantics is an extension of Kripke 

semantics in that a Kripke frame (𝑋, 𝑅), with  a reflexive and transitive relation 𝑅 ⊆ 𝑋 × 𝑋, can 

be seen as an Alexandroff topological space (𝑋, 𝑂𝑋), the topology of which is defined by the 

partial order 𝑅. 

 The topological semantics of modal logics may be considered as more intuitive than 

“abstract” relational (Kripke) semantics and providing a richer source of geometric/spatial 

interpretations. This holds in particular for an epistemic reading. The interior semantics of 

topology is naturally epistemic and extends the relational semantics. Elementary topological 

operators such as the interior operator produce the epistemic logic S4 with no need for 

additional constraints. In other words, in its most general form, topologically modeled 

knowledge is factive and positively introspective; however, it does not necessarily possess 

stronger properties than S4. This in no way limits the usage of interior semantics for stronger 

epistemic systems that include other epistemic modalities such as beliefs or ignorance. The 

interior semantics provides a deeper insight into the evidence-based interpretation of knowledge 

than relational semantics. The topological approach shows that Gettier counterexamples are 

“exceptional” events. Topology has a toolkit of conceptual devices to deal with this kind of 

event, whereas Kripke models do not. Of course, one could amend the Kripke approach in an 

appropriate way. After all, topological structures are just one special type of relational structure. 

But then, topologically amended Kripke models become some kind of topological structure. 

 Using topological models does not need a special justification compared with using Kripke 

models. Topology is not a somehow dubious tool compared with the theory of relational 

structures on which Kripke frames are based. Topology and the theory of relational structures 

have the same mathematical dignity, so to speak. A central claim of my paper is that the 

topological notion of nowhere density (ND) and related topological concepts elucidate 

problems related to Gettier counterexamples in a new way. ND and its relatives are genuine 

topological concepts that do not occur in Kripke models. 

1 The topological concepts and terminology used in this paper are standard. Nevertheless, for the 
sake of definiteness, they will be explained in full detail in Section 2. The introduction of this paper 
only requires a superficial acquaintance with the basic ideas of topology. 
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 As already mentioned, topological epistemic logic may be said to have begun with 

McKinsey and Tarski’s (1944) paper which showed that the epistemic modality of knowledge 

(as it appears in expressions such as “it is known that A,” “one knows that A,” and others) can 

be formalized with the help of the topological kernel operator 𝐼𝑛𝑡 as it occurs in set-theoretical 

topological formulas 𝐼𝑛𝑡(𝐴) (to be read as “the interior of the set 𝐴”). Here, a proposition 𝐴 is 

to be understood as a set of possible worlds where this proposition holds. In recent decades, 

the approach of McKinsey and Tarski’s seminal paper has been extended and further elaborated 

by many authors (see, for instance, the recent works of Baltag and others, and the works 

mentioned therein (Baltag et al. (2017, 2019, 2022)). Today, topological logic may be 

considered as a well-established and thriving approach of the field of epistemic logic and 

formal epistemology.

 In the 60 years since its publication in 1963, Gettier’s short paper has generated a huge 

literature engaged in the invention of ever more sophisticated thought experiments aiming to 

refute the classical justified true belief (JTB)-account of knowledge as true justified belief (cf. 

Turri (2012), Borges et al. (2017)). The present paper tackles the issue from a different angle. 

Following Williamson (2013, 2015) I propose to address the Gettier problem and related issues 

from the perspective of formal epistemic logic. More precisely, the issue is approached from 

the perspective of topological epistemic logic. This allows access to a rich reservoir of formal 

models that can be used to study these problems. This does not mean that the usage of formal 

models definitively decides matters epistemological. They may well be natural formal models 

that provide robust evidence against JTB, and, at the same time, that there are natural formal 

models that provide evidence in favor of JTB. The mere existence of formal models of one 

kind or another does not suffice to decide the question of whether JTB is a correct (or, at least 

a reasonable) account of knowledge and belief. Rather, to deal with this matter in an appropriate 

manner, it is necessary to delve more deeply into the realm of formal models of knowledge and 

belief that one intends to use for the elucidation of these concepts.2 

 How can topological epistemology be related to JTB in general and to the Gettier problem 

in particular? The general answer is that topological epistemic logic investigates (idealizing) 

topological models of knowledge, belief, and other epistemic concepts by modeling them as 

appropriately chosen topological operators. Then the basic issue for dealing with JTB in the 

2 For a general survey of different research programs in epistemic logic and their use of idealizations 
see Yap (2014). Yap does not explicitly mention topological epistemic logic, but explicitly deals 
with Williamson’s proposal to deal with Gettier situations in the framework of Kripke models of 
possible worlds. Mutatis mutandis her remarks on the issue of formal models and idealizations in 
the realm of epistemic logic apply also to topological epistemic logic (cf. Yap (2014, Section 3.3)). 
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framework of topological epistemology is whether there are compelling topological models 

for which knowledge is justified true belief or not. 

 Today, one of the most prominent formal accounts of knowledge is Stalnaker’s “combined 

logic of knowledge and belief” KB. In the framework of KB, knowledge is represented as the 

interior kernel operator 𝐼𝑛𝑡 of a topological space (𝑋, 𝑂𝑋), with 𝑂𝑋 = {𝐼𝑛𝑡(𝐴); 𝐴 ∈ 𝑃𝑋}, 𝑃𝑋 

being the power set of subsets 𝐴 ∈ 𝑃𝑋 are to be conceived as propositions of classical 

propositional logic to be interpreted as sets of possible worlds as usual. While knowledge is 

topologically modeled rather unanimously by the interior operator 𝐼𝑛𝑡, it is less clear how to 

define other epistemic operators such as belief. In Stalnaker’s KB logic, belief is represented 

as 𝐶𝑙𝐼𝑛𝑡3. Baltag et al. (2019) have shown that the operator 𝐶𝑙𝐼𝑛𝑡 works quite well as a belief 

operator of models based on extremally disconnected spaces (ED-spaces). For general 

topological models, however, 𝐶𝑙𝐼𝑛𝑡 is not a good belief operator. As early as in Stalnaker 

(2006) it was observed that for general topological spaces 𝐶𝑙𝐼𝑛𝑡 is not even a normal operator 

in the sense of modal logic. 

 As will be argued in this paper, for general topological models the operator 𝐶𝑙𝐼𝑛𝑡 should 

be replaced by 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡. On ED-spaces, 𝐶𝑙𝐼𝑛𝑡 and 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡 coincide, and on general 

topological spaces 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡 preserves almost all qualities of a plausible belief operator that 

𝐶𝑙𝐼𝑛𝑡 exhibits on ED-spaces. In particular, as will be explained in detail in Section 3, 

𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴) can be interpreted as justified belief 𝐵. This makes it possible to use topological 

logic to deal with the Gettier problem and related issues. By interpreting the operators 𝐼𝑛𝑡 and 

𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡 as knowledge and justified belief, respectively, the basic thesis of JTB-epistemology 

can succinctly be expressed by the identity 

(1.1) 𝐼𝑛𝑡(𝐴) = 𝐴 ∩ 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴) (JTB)

for all propositions 𝐴 ∈ 𝑃𝑋. Informally expressed, (1.1) asserts that knowing that 𝐴 coincides 

with the conjunction that 𝐴 is obtained (true) and that 𝐴 is believed with justification. The 

following reformulation of (1.1) will be useful later. For any proposition 𝐴 ⊆ 𝑋 define

(1.1)’ 𝐺(𝐴) := 𝐴 ∩ 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴) ∩ 𝐼𝑛𝑡(𝐴)𝐶. 

3 Here, 𝐶𝑙 is the topological closure operator, defined by 𝐶𝑙(𝐴) := 𝐼𝑛𝑡(𝐴𝐶)𝐶, 𝐴𝐶 the set-theoretical 
complement of 𝐴 with respect to 𝑋. 𝐶𝑙𝐼𝑛𝑡 and 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡 are concatenations of the operators 𝐼𝑛𝑡 and 
𝐶𝑙.
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𝐺(𝐴) is called the Gettier proposition defined by 𝐴. If 𝐺(𝐴) = ∅ for all 𝐴, this is to be interpreted 

as the classical JTB-epistemology holding for this universe.

 The worlds 𝑤 ∈ 𝐺(𝐴) are called Gettier worlds for 𝐴: A world 𝑤  is a Gettier world for 𝐴, 

i.e., 𝑤 ∈ 𝐺(𝐴), iff in 𝑤  knowledge of 𝐴 does not coincide with true justified belief of 𝐴. A 

topological model (𝑋, 𝑂𝑋) is free of Gettier worlds for all propositions 𝐴 iff 𝐺(𝐴) = ∅ for all 

𝐴. Hence, a topological model (𝑋, 𝑂𝑋) that is free of Gettier worlds for all propositions 𝐴 ∈ 

𝑃𝑋 is a model of JTB epistemology. 

 For the time being, this terminology may be not fully convincing as long as no argument 

has been given that 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡 can be interpreted as justified belief. This gap will be filled in 

Section 3 by explaining in more detail that 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡 can be interpreted as justified belief in a 

strong sense. This requires us to dwell more closely on the justificatory qualities of the 

topological operators 𝐼𝑛𝑡 and 𝐶𝑙 that are inherited by the composition 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡 of these 

components. 

 Now the following natural question arises: Which topological models (𝑋, 𝑂𝑋) of knowledge 

and belief are models of JTB and which are not? The answer to this question will be given in 

several stages. Let us begin with the trivial extreme cases of total ignorance and omniscience. 

For them, one obtains:

(1.2) Proposition. The trivial topological spaces (𝑋, {∅, 𝑋}) and (𝑋, 𝑃𝑋) satisfy JTB, i.e., for 

them, (1.1) is valid.♦

 JTB epistemology is not restricted, of course, to these trivial cases. Consider the following 

example: Recall that a topological space (𝑋, 𝑂𝑋) is almost discrete iff every open set is closed. 

As is well known, a topological space (𝑋, 𝑂𝑋) is almost discrete iff 𝑂𝑋 is a family of pairwise 

disjoint subsets of 𝑋 such that 𝑋 = ⋃𝑂𝑋. In other words, 𝑂𝑋 defines an equivalence relation. 

For almost discrete topological spaces one easily calculates:

(1.3) Proposition. Almost discrete topological spaces (𝑋, 𝑂𝑋) satisfy JTB, i.e., 𝐼𝑛𝑡(𝐴) = 𝐴 ∩ 

𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴) for all 𝐴 ∈ 𝑃𝑋.♦

 By conceiving 𝐼𝑛𝑡 — in the spirit of McKinsey and Tarski’s approach — as a modal 

operator, the topological theory of almost discrete spaces corresponds to the modal logic S5. 

Only a minority of logicians consider this logic to be a satisfying epistemic logic. 

 It is rather almost unanimously agreed that the logic of knowledge and belief is located 

somewhere in the interval of the modal logics between S4 and S5 (cf. Lenzen (1979)). S4 and 
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S5 are to be considered only as boundary stones for the rough determination of where the logic 

of knowledge and belief is located in the landscape of modal logics. It will be shown that being 

almost discrete is in no way a necessary requirement for a topological space to serve as a 

model for JTB.

 

(1.4) Proposition. Let (ℕ,  𝑂ℕ) be the natural numbers endowed with the finite/cofinite 

topology, i.e., the open sets of 𝑂ℕ are ∅, ℕ, and all infinite subsets 𝐴 ⊆ ℕ with finite 

complements 𝐴𝐶. Then (ℕ,  𝑂ℕ) is a model of JTB, i.e., 𝐼𝑛𝑡(𝐴) = 𝐴 ∩ 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴).♦4

 For the moment, these examples may suffice to convince the reader that the JTB account of 

knowledge is not totally without the support of topology. On the other hand, there are many 

topological models of knowledge and belief for which JTB is not valid. Perhaps the best-

known topological model is based on the familiar metrical real line (ℝ,  𝑂ℝ). One easily 

calculates that for this model JTB does not hold: 

(1.5) Proposition. For the topological model of knowledge and belief based on the universe 

of possible worlds of the Euclidean line (ℝ,  𝑂ℝ) and 𝐴:= ℝ − {1/𝑛, 𝑛 ≥ 1} one obtains

 𝐼𝑛𝑡(𝐴) = 𝐴 −  {0} and 𝐴 ∩ 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴) = 𝐴.

 That is, the universe of possible worlds that represents worlds and their relations by 

elements of the Euclidean line (ℝ,  𝑂ℝ) does not support JTB-epistemology.♦

Proof. One has 0 ∉ 𝐼𝑛𝑡(𝐴) since every open neighborhood 𝑈(0) of 0 contains an element 1/𝑛

for some 𝑛 that is not contained in 𝐴. On the other hand, 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴) = ℝ, since all open 

neighborhoods of 0 and 1/𝑛 contain elements of 𝐼𝑛𝑡(𝐴). Hence, the sets 𝐼𝑛𝑡(𝐴) and 𝐴 ∩

𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴) differ. In other words, (ℝ,  𝑂ℝ) does not satisfy the defining condition (1.1) of 

JTB.♦

 Topological epistemology is, so to speak, “undecided” with respect to JTB: some 

topological models satisfy JTB, others do not. 

4 For later use, it may be observed that (ℕ,  𝑂ℕ) is also an extremally disconnected space (cf. Baltag 
et al. (2019), p. 215, and Section 4, Corollary 4.5). This implies that (ℕ,  𝑂ℕ) is a model of 
Stalnaker’s combined logic KB.
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 Admittedly, models (1.2)–(1.4) of JTB are rather trivial and hardly provide a convincing 

explanation of why JTB played such a prominent role in traditional epistemology. More is 

needed to argue that JTB is topologically plausible in some sense. A more complete presentation 

of JTB-models in topological epistemology is called for. The present paper aims to provide 

exactly this. 

 The organization of this paper is as follows. The next two sections provide the prerequisites 

for the above purposes. In Section 2 we introduce the necessary formal apparatus to deal with 

concepts of knowledge and belief in a topological framework. In Section 3 we recall the basics 

of a topological version of Stalnaker’s combined logic KB of knowledge and belief. This has 

been elaborated in detail by Baltag et al. in various publications (cf. Baltag et al. (2017, 2019, 

2022) and elsewhere). Moreover, it is shown that Stalnaker’s concept of belief is justified 

belief in quite a strong sense. Thus, Stalnaker’s KB logic is directly relevant to the issue of 

JTB.

 The central part of this paper (Section 4) deals with three issues. First, we show that there 

exist many “natural” topological JTB-models, i.e., models that satisfy the axiom (1.1) 

characteristic for JTB. In the standard language of topology, JTB holds for topological models 

based on topological spaces (𝑋, 𝑂𝑋) that are nodec5 spaces. These spaces are defined by the 

special topological feature that all their nowhere dense subsets are closed. This has the result 

that the class of nodec spaces to provide a niche for the survival of the JTB-account. Second, 

we show that for every topological space (𝑋, 𝑂𝑋) whatsoever there exists a canonical nodec 

space (𝑋, 𝑂𝑛𝑜𝑑𝑋). This nodec space (𝑋, 𝑂𝑛𝑜𝑑𝑋) is a kind of doppelganger of (𝑋, 𝑂𝑋) in a precise 

topological sense, namely (𝑋, 𝑂𝑛𝑜𝑑𝑋) is very similar to the original topological space (𝑋, 𝑂𝑋) 

from which it is derived. Most topological models, however, are not JTB-models. The epistemic 

logic of nodec spaces is characterized as an extension of the standard modal logic S4, namely 

by the extension of S4 by the Zeman axiom ((□¬□¬□𝑝)→(𝑝→□𝑝)), where □𝑝 is to be 

interpreted as “𝑝 is known” (cf. Zeman (1969), Bezhanishvili et al. (2004)). 

 The last topic treated in Section 4 is the discussion of a topological analogue of a double 

luck construction that has been used in many thought experiments proposed by the “Gettier 

industry” as a device for providing ever more sophisticated examples of Gettier situations 

refuting the classical JTB-account. This construction shows that the topological account is able 

to emulate important aspects of the standard informal thought experiments leading to Gettier 

situations. 

5 A space (𝑋, 𝑂𝑋) is nodec iff all nowhere dense subsets of 𝑋 are closed (nodec = no(where) de(nse) 
c(losed)) (cf. van Douwen (1993), Definition and Fact 1.14, p. 129). For some equivalent definitions 
of nodec spaces see Bezhanishvili et al. (2004, Theorem 2.5).
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 In Section 5 we show that for general topological models (𝑋, 𝑂𝑋) for which Gettier 

propositions exist, these propositions can be neither known nor believed with respect to the 

epistemic operators 𝐼𝑛𝑡 and 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡 that characterize the topological model (𝑋, 𝑂𝑋): Gettier 

cases are epistemically and doxastically invisible, i.e., if 𝑤  is a world for which a Gettier 

situation holds with respect to a proposition 𝐴, an agent who relies on the operators 𝐼𝑛𝑡 and 

𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡 neither knows nor consistently believes that w is an A-world. This doxastic invisibility 

of Gettier cases may have contributed to the impression that the traditional JTB account (for 

which no Gettier cases exist) appears to be correct without it being so. We conclude with some 

general remarks on further possible directions of research on topological epistemology in 

Section 6.

2.  The Topology of Knowledge and Belief

To set the stage, in this section we recall the absolutely necessary basics of elementary set-

theoretical topology needed for the formulation of the interior semantics for epistemic logic of 

knowledge and belief as presented by Baltag et al. (cf. Baltag et al. (2017, 2019. 2022)). This 

semantics will be used throughout the rest of this paper. First, recall the definition of a 

topological space:

(2.1) Definition. Let 𝑋 be a set with power set 𝑃𝑋. A topological space is an ordered pair (𝑋, 

𝑂𝑋) with 𝑂𝑋 ⊆  𝑃𝑋 that satisfies the following conditions:

(i) ∅, 𝑋 ∈ 𝑂𝑋.

(ii)  𝑂𝑋 is closed under finite set-theoretical intersections ∩ and arbitrary set-theoretical 
unions ∪.♦

 The elements of 𝑂𝑋 are called the open sets of the topological space (𝑋, 𝑂𝑋). The set-

theoretical complement 𝐴𝐶 of an open set 𝐴 ⊆ 𝑋 is called a closed set. The set of closed subsets 

of (𝑋, 𝑂𝑋) is denoted by 𝐶𝑋. The interior kernel operator 𝐼𝑛𝑡 and the closure operator 𝐶𝑙 of 

(𝑋, 𝑂𝑋) are defined as usual: the interior kernel 𝐼𝑛𝑡(𝐴) of a set 𝐴 ∈ 𝑃𝑋 is the largest open set 

that is contained in 𝐴; the closure 𝐶𝑙(𝐴) of 𝐴 is the smallest closed set containing 𝐴.6 Topologies 

(𝑋, 𝑂𝑋) on a set 𝑋 can be partially ordered set-theoretically. 

6 For details, see Willard (2004), Steen and Seebach Jr. (1978), or any other textbook on set-theoretical 
topology.
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(2.2) Definition. Let (𝑋, 𝑂𝑋) and (𝑋, 𝑂’𝑋) be two topologies on 𝑋. 𝑂𝑋 is said to be coarser 

than 𝑂’𝑋 iff 𝑂𝑋 is a subset of 𝑂’𝑋, i.e., 𝑂𝑋 ⊆  𝑂’𝑋. If 𝑂𝑋 is coarser than 𝑂’𝑋 this is also 

expressed by saying that 𝑂’𝑋 is finer than 𝑂𝑋.♦

 Clearly, the coarsest topology on 𝑋 is 𝑂0𝑋 = {∅, 𝑋} and the finest topology is 𝑂1𝑋 = 𝑃𝑋. 

For all topologies 𝑂𝑋 one has 

 𝑂0𝑋 ⊆ 𝑂𝑋 ⊆ 𝑂1𝑋.

The set 𝛵𝑂𝑃(𝑋) := {𝑂𝑋; 𝑂𝑋 is a topology on 𝑋} endowed with the partial order ⊆  is well 

known to be a complete lattice (𝑇𝑂𝑃(𝑋), ⊆ ). The infimum in (𝛵𝑂𝑃(𝑋), ⊆ ) is just the set-

theoretical intersection of topologies, the bottom element is {𝑋, ∅}, and the top element is (𝑋, 

𝑃𝑋).

 The epistemological interpretation of 𝛵𝑂𝑃(𝑋) works as follows: 𝑂𝑋 ∈  𝛵𝑂𝑃(𝑋) is to be 

interpreted as a cognitive agent who uses the interior kernel operator 𝐼𝑛𝑡 of as a knowledge 

operator for their epistemic activity. More precisely, 𝐴 ∈ 𝑃𝑋 is interpreted as a proposition 𝐴. 

𝐴 is true in a world 𝑤 ∈ 𝑋 iff 𝑤 ∈ 𝐴; otherwise, 𝐴 is false in 𝑤 . A proposition 𝐴 entails a 

proposition 𝐷 iff 𝐴 is a subset of 𝐷, 𝐴 ⊆ 𝐷. The other Boolean operators on 𝑃𝑋 are to be 

interpreted as usual. A proposition 𝐴 is known at a world 𝑤  iff 𝑤 ∈ 𝐼𝑛𝑡(𝐴). The fact 𝑤 ∈ 𝐶𝑙(𝐴)

is to be interpreted as the fact that 𝑤  is considered conceptually possible to be an 𝐴-world. Or, 

in a more agent-centered language, an epistemiagent knows that 𝑥 is in 𝐴 iff 𝑤  belongs to 

𝐼𝑛𝑡(𝐴). The assertion that 𝑤  is an 𝐴-world is to be considered as equivalent to the assertion 

that the proposition 𝐴 is true in the world 𝑤 .

 The partial order ⊆  on the lattice (𝑇𝑂𝑃(𝑋), ⊆ ) has an obvious epistemological interpretation: 

if 𝑂𝑋 ⊆  𝑂’𝑋 ∈ 𝑇𝑂𝑃(𝑋) a cognitive agent who uses 𝑂𝑋 has less knowledge than an agent who 

uses 𝑂’𝑋. Moving from (𝑋, 𝑂𝑋) to (𝑋, 𝑂’𝑋) may be conceived as a learning process in which 

the epistemic agent enhances their cognitive powers by extending their knowledge from 𝑂𝑋 to 

𝑂’𝑋. The maximal (discrete) topology 𝑂1𝑋 may be interpreted as (trivial) omniscience with 

respect to the universe of possible worlds 𝑋. 

 The partial order ⊆  on 𝑇𝑂𝑃(𝑋) will be important in later sections to assess the relation 

between traditional JTB-epistemology (for which no Gettier situations exist) and modern 

“post-Gettier” epistemology which recognizes the existence of Gettier cases. 

 The topological operators 𝐼𝑛𝑡 and 𝐶𝑙 are well-known to satisfy the Kuratowski axioms (cf. 

Kuratowski and Mostowski (1976)): 
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(2.3) Proposition (Kuratowski axioms). Let (𝑋, 𝑂𝑋) be a topological space, 𝐴, 𝐷 ∈ 𝑃𝑋. 

Define the interior kernel operator 𝐼𝑛𝑡 of (𝑋, 𝑂𝑋) by 𝐼𝑛𝑡(𝐴) := ∪{𝑈 ; 𝑈 ∈ 𝑂𝑋 and 𝑈 ⊆  𝐴}. 

Dually, the closure operator 𝐶𝑙 is defined by 𝐶𝑙(𝐴) := ∩{𝐾; 𝐾 ∈  𝐶𝑋 and 𝐴 ⊆ 𝐾}. The operators 

𝐼𝑛𝑡 and 𝐶𝑙 satisfy the following axioms:

(i) 𝐼𝑛𝑡(𝐴 ∩ 𝐷) = 𝐼𝑛𝑡(𝐴) ∩ 𝐼𝑛𝑡(𝐷). 𝐶𝑙(𝐴 ∪ 𝐷) = 𝐶𝑙(𝐴) ∪ 𝐶𝑙(𝐷).

(ii) 𝐼𝑛𝑡(𝐼𝑛𝑡(𝐴)) = 𝐼𝑛𝑡(𝐴). 𝐶𝑙(𝐶𝑙(𝐴)) = 𝐶𝑙(𝐴).

(iii) 𝐼𝑛𝑡(𝐴) ⊆ 𝐴. 𝐴 ⊆ 𝐶𝑙(𝐴).

(iv) 𝐼𝑛𝑡(𝑋) = 𝑋. ∅ = 𝐶𝑙(∅).♦

In the following, the Kuratowski axioms are used without explicit mention. Moreover, we will 

freely use the fact that the operators 𝐼𝑛𝑡 and 𝐶𝑙 are interdefinable: 𝐼𝑛𝑡(𝐴) = 𝐶𝑙(𝐴𝐶)𝐶 and 𝐶𝑙(𝐴)

= 𝐼𝑛𝑡(𝐴𝐶)𝐶.

 Further, it is often expedient to conceive the operators 𝐼𝑛𝑡 and 𝐶𝑙 as operators 𝐼𝑛𝑡:𝑃𝑋→𝑃𝑋

and 𝐶𝑙:𝑃𝑋→𝑃𝑋 defined on 𝑃𝑋 in the obvious way. Hence, the concatenation of these operators 

makes perfect sense. In the following, concatenations such as 𝐼𝑛𝑡𝐶𝑙 and 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡 will play an 

important role. For later use, we note the following:

(2.4) Proposition. Let (𝑋, 𝑂𝑋) be a topological space with interior kernel operator 𝐼𝑛𝑡, closure 

operator 𝐶𝑙, and 𝐴, 𝐷 ∈ 𝑃𝑋.

(i) 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡𝐶𝑙(𝐴) = 𝐼𝑛𝑡𝐶𝑙(𝐴) and 𝐶𝑙𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴) = 𝐶𝑙𝐼𝑛𝑡(𝐴).

(ii) 𝐼𝑛𝑡𝐶𝑙(𝐼𝑛𝑡(𝐴) ∩ 𝐷) = 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴) ∩ 𝐼𝑛𝑡𝐶𝑙(𝐷).

Proof. Identities (i) are well known and identity (ii) is also well known for 𝐴, 𝐷 ∈ 𝑂𝑋. For the 

following, however, we need also the stronger but less known fact that the identity (ii) even 

holds if 𝐷 is not open. The proof of (2.4)(ii) can be found in Kuratowski and Mostowski (1976, 

Ch. I, §8).♦

(2.5) Definition. A subset 𝑍 of a topological space (𝑋, 𝑂𝑋) is nowhere dense iff 𝐼𝑛𝑡𝐶𝑙(𝑍) =

∅.♦

 Informally expressed, nowhere dense subsets of (𝑋, 𝑂𝑋) are topologically “small” or 

“negligible.” Looking at familiar topological spaces such as the Euclidean time, this informal 
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expression is quite plausible. Epistemologically, nowhere dense sets may be interpreted as 

propositions for which the conceptual possibility cannot be known. Examples of nowhere 

dense subsets of the real line (ℝ,  𝑂ℝ) are the natural numbers ℕ ⊂ ℝ and the Cantor dust 𝐷.

 Before we address this issue, however, it is expedient to dwell a little more upon the general 

problem of how the epistemological concept of belief is to be explicated topologically. This 

issue is less clear than the corresponding problem for knowledge. Kuratowski (1922) proved 

that there are exactly seven different combinations7 of the topological operators 𝐼𝑛𝑡 and 𝐶𝑙:

(2.6) 𝐼𝑑8,  𝐼𝑛𝑡, 𝐶𝑙, 𝐼𝑛𝑡𝐶𝑙, 𝐶𝑙𝐼𝑛𝑡, 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡, 𝐶𝑙𝐼𝑛𝑡𝐶𝑙.

It is not directly obvious whether any of the combinations of these seven operators can be 

meaningfully interpreted as a formal topological model of belief. For instance, the closure 

operator 𝐶𝑙 is certainly not a plausible candidate for a belief operator since the inclusion 𝐴 ⊆ 

𝐶𝑙(𝐴) (required by (2.3)(iii)) had to be interpreted as the assertion that if w is an 𝐴-world, i.e., 

𝑤 ∈ 𝐴, then it would be believed that 𝑤  is an 𝐴-world. This is certainly not true for a realistic 

concept of belief: there are many facts that are not believed to be facts. Further, it may be 

necessary for the following four intuitively plausible conditions to be satisfied by a “good” 

belief operator: 

(2.7) Definition (Adequacy conditions for belief operators). Let (𝑋, 𝑂𝑋) be a topological 

space of possible worlds and 𝐴, 𝐷 ∈ 𝑃𝑋 be propositions. An operator 𝐵:𝑃𝑋→𝑃𝑋 can be 

interpreted as a good belief operator only if it satisfies the following (in)equalities for all 𝐴 and 

𝐷:

(i)  𝑁𝑂𝑇(𝐴 ⊆ 𝐵(𝐴)): There is a world 𝑤  that is an 𝐴-world but is not believed to be an 
𝐴-world.

(ii)  𝑁𝑂𝑇(𝐵(𝐴) ⊆ 𝐴): There is a world 𝑤  that is believed to be an 𝐴-world but is not an 
𝐴-world.

(iii)  𝐵(𝐵(𝐴)) = 𝐵(𝐴): The proposition 𝐴 is believed iff it is believed that 𝐴 is believed.

(iv)  𝐵(𝐴 ∩ 𝐷) = 𝐵(𝐴) ∩ 𝐵(𝐷): The conjunction of propositions 𝐴 and 𝐵 is believed iff 𝐴 
is believed and 𝐷 is believed.♦

7 This means that there are topological spaces (𝑋, 𝑂𝑋) and propositions 𝐴 ∈ 𝑃𝑋 such that the operators 
of (2.6) yield seven different results: A, 𝐼𝑛𝑡(𝐴), 𝐶𝑙(𝐴), 𝐼𝑛𝑡𝐶𝑙(𝐴), 𝐶𝑙𝐼𝑛𝑡(𝐴), 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴), and 
𝐶𝑙𝐼𝑛𝑡𝐶𝑙(𝐴).

8 𝐼𝑑 is the identity map 𝐼𝑑(𝐴) = 𝐴, considered as the empty concatenation of 𝐼𝑛𝑡 and 𝐶𝑙.
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 A closer look at (2.6) reveals that there is indeed one operator in this list that scores quite 

well as a plausible candidate for the office of a good belief operator, namely, the operator 

𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡. As is easily checked by elementary examples and calculations, 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡 satisfies 

(2.7)(i)–(iv). Even better, for all topological spaces (𝑋, 𝑂𝑋) the pair of operators (𝐼𝑛𝑡, 

𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡) satisfies all axioms of Stalnaker’s combined logic KB of knowledge and belief 

except the axiom of negative introspection (hereafter axiom (NI); cf. Stalnaker (2006), Baltag 

et al. (2019)). 

3. Stalnaker’s Combined Logic KB  

of Knowledge and Justified Belief

 First, for the sake of definiteness, let us recall the basics of the syntax and semantics of the 

modal language to be employed in the following. We consider a bimodal extension LKB of 

standard propositional logic defined by two modal operators 𝐾 and 𝐵. The formulas of the 

language LKB are defined on a countable set of propositional letters 𝑃𝑅𝑂𝑃, Boolean operator 

¬, ∧, and the modal operators 𝐾 and 𝐵 by the following grammar: 

 𝜑:= 𝑝 | ¬𝑝 | 𝜑 | 𝜑 ∧ 𝜑 | 𝐾𝜑 | 𝐵𝜑 |,  𝑝 ∈ 𝑃𝑅𝑂𝑃. 

The abbreviations for the connectives ∨, →, and ↔ are standard. The unimodal fragments of 

LKB defined by 𝐾 and 𝐵 are denoted by 𝐿𝐾 and 𝐿𝐵 , respectively. Now, the axioms and the 

inference rules of Stalnaker’s system KB of a combined logic of knowledge and belief can be 

formulated as follows (cf. Stalnaker (2006), Baltag et al. (2017, 2019)):

(3.1) Definition (Axioms and inference rules of Stalnaker’s logic of knowledge and 

belief). 

(CL) All tautologies of classical propositional logic. 

(K) 𝐾(𝜑 → 𝜓) → (𝐾𝜑 → 𝐾𝜓). (Knowledge is additive)

(T) 𝐾𝜑 → 𝜑.  (Knowledge implies truth)

(KK) 𝐾𝜑 → 𝐾𝐾𝜑. (Positive introspection of 𝐾)

(CB) 𝐵𝜑 → ¬𝐵¬𝜑. (Consistency of belief)

(PI) 𝐵𝜑 → 𝐾𝐵𝜑. (Positive introspection of 𝐵)

(NI) ¬𝐵𝜑 → 𝐾¬𝐵𝜑. (Negative introspection of 𝐵)
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(KB) 𝐾𝜑 → 𝐵𝜑. (Knowledge implies belief)

(FB) 𝐵𝜑 → 𝐵𝐾𝜑. (Full belief)

Inference Rules:
(MP) From 𝜑 and 𝜑 → 𝜓, infer 𝜓. (Modus ponens)

(NEC) From 𝜑, infer 𝐾𝜑. (Necessitation)♦

 For the topological approach to knowledge and belief, axiom (NI) plays a special role. It 

has been shown that axiom (NI) holds only for topological models of a very special kind, 

namely, models based on extremally disconnected spaces (cf. Baltag et al. (2019), Stalnaker 

(2006)). All other axioms and rules of KB are satisfied by all topological spaces. Thus, by 

giving up (NI) considerable generality is gained. There is a cost, however. The validity of the 

axiom (NI) guarantees unique definability of the belief operator, i.e., for extremally 

disconnected9 spaces, the belief operator is uniquely determined by the knowledge operator as 

𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡 (cf. Baltag et al. (2019), Stalnaker (2006), Mormann (2023)). This no longer holds 

for topological models that are not extremally disconnected. For the systems of knowledge and 

belief considered in this paper, it is only required that they are weak Stalnaker systems in the 

following sense: 

(3.2) Definition (Weak KB logic). A bimodal logic with modal operators 𝐾 and 𝐵 based on 

the bimodal language LKB is a weak KB- logic iff it satisfies the conditions

(i) 𝐵(𝜑→ 𝜓) → (𝐵𝜑 → 𝐵𝜓). (Kripke axiom K for 𝐵)

(ii) 𝐵𝐵𝜑 ↔ 𝐵𝜑. (Idempotence (4)* of 𝐵)

(iii)  For the tandem (𝐾, 𝐵), all of Stalnaker’s axioms and rules given in (3.1) are satisfied 
except axiom (NI).♦ 

 Note that the 𝐵-fragment of weak KB logic in the sense of (3.2) is a normal modal logic 

since the necessitation rule NEC for 𝐵 is satisfied: from 𝜑 one may infer 𝐵𝜑.10 Further, by 

(3.2) one has: 

9 Recall that a space (𝑋, 𝑂𝑋) is extremally disconnected iff the closure of every open set is open: 
𝐶𝑙𝐼𝑛𝑡(𝐴) = 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴) (cf. Willard (2004, 15.G, p. 106)).

10 For various equivalent definitions of a normal modal logic, see Chellas (1980, Theorem 4.3, p. 115).
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(3.3) Corollary. The 𝐵-fragment of weak KB-logic is a KD4*-logic. More precisely, the 

following axioms hold in weak KB:

(K) 𝐵(𝜑→𝜓) → (𝐵(𝜑)→𝐵(𝜓)). 

(D) 𝐵𝜑 → ¬𝐵¬𝜑. 

(4)* 𝐵𝜑 ↔ 𝐵𝐵𝜑.♦ 

 This result may be compared with the corresponding result for full KB logic that the 

𝐵-fragment of full KB logic is a KD45 system (cf. Baltag et al. (2019, Proposition 4), Stalnaker 

(2006)).11 

 The 𝐵-fragment of a weak KB-system is slightly stronger than just a KD4-system, since the 

idempotence of 𝐵 ((3.2)(ii)) requires not only 𝐵𝜑→𝐵𝐵𝜑, i.e., axiom (4), but also its converse 

𝐵𝐵𝜑→𝐵𝜑. One observes that for (full) KB systems the operator 𝐵 is idempotent. Hence, the 

𝐵-fragment of full KB logic can be characterized more precisely by KD4*5. 

 The following proposition shows that definitions (3.1) and (3.2) fit well together:

(3.4) Proposition. Weak KB logic is strictly weaker than KB logic. 

Proof. First, we show that the modal operator 𝐵 of KB logic satisfies the Kripke axiom (K) of 

(3.2)(i). According to Stalnaker (2006) and Baltag et al. (2019) in KB-logic, one has 

(3.5) 𝐵 ↔ ¬𝐾¬𝐾 ↔ 𝐾¬𝐾¬𝐾.

As is easily checked, 𝐾¬𝐾¬𝐾 is a normal operator, i.e., it satisfies (K). Moreover, it is easily 

verified that (3.2)(ii) is satisfied, i.e., 𝐵 is idempotent ((4)*). Hence, as it should be, KB logic 

is a weak KB logic. To show that weak KB is strictly weaker than KB, one has to find a formula 

that is valid for KB but not for weak KB. The formula ¬𝐾¬𝐾(𝜑 ∧ 𝜓) ↔ ¬𝐾¬𝐾𝜑 ∧ ¬𝐾¬𝐾𝜓 

is such a formula.♦

(3.6) Definition. Given a topological space (𝑋, 𝑂𝑋), we define a topo(logical) model for 𝐿𝐾 

as 𝑀 = (𝑋, 𝑂𝑋, 𝜇), where 𝜇:𝑃𝑅𝑂𝑃→𝑃𝑋 is a valuation function from the set 𝑃𝑅𝑂𝑃 of 

propositional letters to 𝑃𝑋.♦

11 Elementary examples based on the Euclidean line (ℝ,  𝑂ℝ) show that there are models of the weak 
KB logic whose 𝐵-fragments are not KD45 models. 
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 The function 𝜇:𝑃𝑅𝑂𝑃→𝑃𝑋 can be inductively extended to a function 𝜇:𝐹𝑂𝑅𝑀 (𝐿𝐾)→𝑃𝑋 

(also denoted by 𝜇) of the set of well-formed formulas 𝐹𝑂𝑅𝑀 (𝐿𝐾) of 𝐿𝐾 to 𝑃𝑋 in the usual way 

by defining:

(3.7) Definition. Let 𝑀 = (𝑋, 𝑂𝑋, 𝜇) be a topological model of 𝐿𝐾. The interior semantics of 

LKB with values in 𝑀  is given by 

(i)  𝜇(𝑝) ∈  𝑃𝑋.

(ii) 𝜇(¬𝑝) := 𝜇(𝑝)𝐶. 

(iii) 𝜇(𝜑∧𝜓) := 𝜇(𝜑) ∩ 𝜇(𝜓).

(iv) 𝜇(𝐾𝜑) := 𝐼𝑛𝑡𝜇(𝜑).

(v) 𝜇(𝐵𝜑) := 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡𝜇(𝜑).♦

 Actually, the semantics of (3.7) is the semantics of the unimodal language 𝐿𝐾, since 𝐵𝜑 is 

defined in terms of 𝐾𝜑, namely 𝑣(𝐵𝜑) ↔𝑣(𝐾(𝑣(¬(𝐾¬(𝑣(𝐾𝜑))))). For topological models 

(𝑋, 𝑂𝑋, μ) the truth of a formula 𝜑 at a world 𝑤 ∈ 𝑋 is inductively defined as usual:

(i) 𝑀 , 𝑤 ⊨ 𝑝 iff 𝑤 ∈ μ(𝑝).

(ii) 𝑀 , 𝑤 ⊨ ¬𝜑 iff 𝑁𝑂𝑇(𝑀 , 𝑤 ⊨ 𝜑).

(iii) 𝑀 , 𝑤 ⊨ 𝜑 ∧ 𝜓 iff (𝑀 ,  𝑤 ⊨ 𝜑) and (𝑀 , 𝑤 ⊨ 𝜓).

(iv) 𝑀 , 𝑤 ⊨ 𝜑 ∨ 𝜓 iff (𝑀 ,  𝑤 ⊨ 𝜑) or (𝑀 ,  𝑤 ⊨ 𝜓).

(v) 𝑀 , 𝑤 ⊨ 𝜑 → 𝜓 iff 𝑁𝑂𝑇(𝑀 , 𝑤 ⊨ 𝜑) or (𝑀 , 𝑤 ⊨ 𝜓)).

(vi) 𝑀 , 𝑤 ⊨ 𝐾𝜑 iff ∀𝑈(𝑈∈ 𝑂𝑋 (𝑤 ∈ 𝑈 and ∀𝑣 ∈ 𝑈(𝑀 ,  𝑣 ⊨ 𝜑)).

(vii) 𝑀 , 𝑤 ⊨ 𝐵𝜑 iff ∃𝑈(𝑈∈ 𝑂𝑋(𝑤 ∈ 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝑈) and ∀𝑣 ∈ 𝑈(𝑀 , 𝑣 ⊨ 𝐾𝜑)).

We call a formula 𝜑 true in a topological model 𝑀 = (𝑋, 𝑂𝑋, 𝜇), denoted by 𝑀 |= 𝜑, if 𝑀 , 𝑥

|= 𝜑 for all 𝑥  ∈ 𝑋, and valid in a topological space 𝑋 = (𝑋, 𝑂𝑋), denoted by 𝑋 |= 𝜑, if 𝑀 |=

𝜑 for every topological model 𝑀  based on 𝑋. Moreover, we say that 𝜑 is valid in a class 𝐾 of 

topological spaces, denoted by 𝐾 |= 𝜑 , if 𝑋 |= 𝜑 for every member of this class, and that it is 

valid, denoted by |= 𝜑, if it is valid in the class of all topological spaces. Soundness and 

completeness with respect to this interior semantics are defined as usual. ♦

 With this familiar formal apparatus in place, it has been proved in Mormann (2023) that 

weak KB logic is sound and complete. In this paper the knowledge operator of a topological 
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𝑀  is always interpreted as the topological interior kernel operator 𝐼𝑛𝑡 of (𝑋, 𝑂𝑋), and the 

belief operator is always interpreted as 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡.12 Checking the pertinent definitions of a 

topology (2.1) and (2.3) and the axioms of weak KB-systems (3.2) one easily obtains the 

following:

(3.8) Proposition. Every topological model (𝑋, 𝑂𝑋, 𝜇) defines a model of a weak Stalnaker 

system KB in the sense of (3.2). ♦ 

 As already mentioned, with more effort the following stronger theorem can be proved:

(3.9) Theorem. A topological model (𝑋, 𝑂𝑋, 𝜇) satisfies all rules and axioms (3.1) of a 

Stalnaker model ((NI) included) iff (𝑋, 𝑂𝑋) is an extremally disconnected space (ED-space) 

(cf. Baltag et al. (2019), Stalnaker (2006).♦

 To deal with epistemological issues concerning the Gettier problem and related questions, 

the belief operator 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡 should not just be any kind of belief, but rather justified belief. For 

this claim we may argue as follows. First, we notice that the interior semantics of knowledge 

offers, so to speak, a built-in evidential justification of knowledge. Eventually this also gives 

rise to a strong justificatory component of the belief operator 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡. This may be explicated 

by interpreting the steps that go from knowledge 𝐼𝑛𝑡 over 𝐶𝑙𝐼𝑛𝑡 to belief 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡 as follows. 

 For 𝐴 ∈ 𝑃𝑋 the proposition 𝐼𝑛𝑡(𝐴) is true at a world 𝑤 ∈ 𝑋 iff 𝑤 ∈ 𝐼𝑛𝑡(𝐴). By definition 

(2.3) of 𝐼𝑛𝑡, this means that there is an open neighborhood 𝑈(𝑤 ) of w such that 𝑤 ∈ 𝑈(𝑤 ) ⊆ 

𝐼𝑛𝑡(𝐴). By definition one has 𝑈(𝑤 ) ∈  𝑂𝑋. Epistemically, 𝑈(𝑤 ) may be interpreted as a piece 

of observable evidence that the cognitive agent possesses. 

 To render plausible the interpretation of the belief operator 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡 as justified belief, it is 

expedient to dwell more on the definition of 𝐼𝑛𝑡 and its justificatory aspects. For this purpose, 

the following definition is useful:

 

(3.10) Definition. A subbase of a topological space (𝑋, 𝑂𝑋) is a subset 𝑆𝑋 ⊆  𝑂𝑋 such that 

every element of 𝑂𝑋 is the set-theoretical union of a finite set of intersections of elements of 

𝑆𝑋. A base of 𝐵𝑋 of (𝑋, 𝑂𝑋) is a subbase 𝑆𝑋 of (𝑋, 𝑂𝑋) such that every element of 𝑂𝑋 is a 

set-theoretical union of elements of 𝑆𝑋.♦ 

12 For all topological spaces, other definitions for belief operators are possible such that all topological 
spaces (𝑋, 𝑂𝑋) define models of weak KB logic, but they will not be considered in this paper. See 
Mormann (2023). 
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 Informally expressed, a subbase of (𝑋, 𝑂𝑋) “generates” the topology 𝑂𝑋. Clearly, every 

subbase 𝑆𝑋 defines a base 𝐵𝑋 by taking all finite intersections of elements of 𝑆𝑋 as elements 

of 𝐵𝑋. Every topology (𝑋, 𝑂𝑋) has 𝑂𝑋 as its largest base. Often, it is convenient to look for 

smaller (sub)bases of 𝑂𝑋, however. For instance, a useful subbase for the topological space of 

the Euclidean line (ℝ,  𝑂ℝ) is the set of all open rational intervals {(𝑎, 𝑏); 𝑎 < 𝑏,  𝑎, 𝑏 ∈ ℚ}. 

Epistemologically interpreted, a subbase 𝑆𝑋 of 𝑂𝑋 may be considered as the class of 

(propositions of) directly observable evidences that are available to a cognitive agent whose 

epistemic activity is characterized by 𝑂𝑋 (cf. Baltag et al. (2019)). Correspondingly, a base 

generated by subbase 𝑆𝑋 of 𝑂𝑋 may be considered as the class of finitely constructed (indirect) 

evidences that the cognitive agent carries out in the ongoing process of their research. 

 Defining knowledge topologically by the operator 𝐼𝑛𝑡 comes with the conceptual advantage 

that knowledge thus defined is naturally correlated with appropriate evidence. That 𝑤  is an 

𝐴-world is known is true iff there is an open neighborhood 𝑈(𝑤 ) of 𝑤  such that 𝑤 ∈ 𝑈(𝑤 ) ⊆ 

𝐴. Bringing into play the concepts of bases and subbases, we may say that a cognitive agent 

engaged in the task of claiming with justification that they know that 𝑤  is an 𝐴-world has to 

find a finitely constructed piece of evidence 𝑈(𝑤 ) from a subbase 𝑆𝑋 of 𝑂𝑋 such that 𝑤 ∈ 

𝑈(𝑤 ) ∈  𝑂𝑋 and  𝑤 ∈ 𝑈(𝑤 ) ⊆ 𝐴. This account of knowledge based on evidential justification can 

be expanded to a justificatory account of belief. According to (3.8)(v) the belief of a proposition 

𝐴 is defined as the proposition 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴). By (3.7) the operator 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡 is a good belief 

operator in the sense that the pair (𝐼𝑛𝑡, 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡) satisfies the rules and axioms of a weak 

Stalnaker system KB. Moreover, 𝐼𝑛𝑡(𝐴) and 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴) are extensionally very close to each 

other: 

(3.11) Lemma. The extensional difference between 𝐼𝑛𝑡(𝐴) (knowing that 𝐴) and 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴) 

(believing that 𝐴) is topologically small, i.e., nowhere dense:

 𝐼𝑛𝑡𝐶𝑙(𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴) ∩ 𝐼𝑛𝑡(𝐴)𝐶) = ∅ for all 𝐴 ∈ 𝑃𝑋.

Proof. From (2.4) we calculate 𝐼𝑛𝑡𝐶𝑙(𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴) ∩ 𝐼𝑛𝑡(𝐴)𝐶) = 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴) ∩

𝐼𝑛𝑡𝐶𝑙(𝐼𝑛𝑡(𝐴)𝐶) = 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴) ∩ 𝐼𝑛𝑡𝐶𝑙(𝐼𝑛𝑡(𝐴)𝐶) ⊆  𝐶𝑙𝐼𝑛𝑡(𝐴) ∩ (𝐶𝑙𝐼𝑛𝑡𝐼𝑛𝑡(𝐴))𝐶 = ∅.♦

 Now, 𝐼𝑛𝑡(𝐴) as knowledge of 𝐴 is certainly justified, since knowledge as such “by 

definition” is evidentially justified. Hence, a proposition 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴) that differs from 𝐼𝑛𝑡(𝐴) 

by a topologically negligible difference may also be considered as justified, although not as 
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knowledge but at least as justified belief. Elementary examples for which justified belief may 

differ from (true) knowledge are easily constructed:

(3.12) Example. For the Euclidean line (ℝ,  𝑂ℝ) consider the set 𝐴 := [− 1, 1] − {0}. One 

calculates 𝐼𝑛𝑡(𝐴) = (− 1, 1) − {0} and 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴) = (− 1, 1), i.e., 𝐼𝑛𝑡(𝐴) ≠ 𝐴 ∩ 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴). 

Hence, it is believed that 0 is an 𝐴-world, but it is actually false that 0 is an 𝐴-world. Thus, it 

is not known that 0 is an 𝐴-world.♦

 Example (3.12) suggests that in general 𝐼𝑛𝑡(𝐴) and 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴) extensionally differ only 

in rare exceptional cases. This is indeed the case: From (2.4)(ii) one calculates that the set-

theoretical difference between these sets is topologically small, i.e., nowhere dense:

 𝐼𝑛𝑡𝐶𝑙(𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴) ∩ 𝐼𝑛𝑡(𝐴)𝐶) = ∅.♦ 

 For the special case of topological models based on extremally disconnected spaces treated 

in detail by Baltag et al. (2019), the operators 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡 and 𝐶𝑙𝐼𝑛𝑡 coincide. Recalling that in 

modal logic the closure operator 𝐶𝑙 is naturally interpreted as (conceptual) possibility, on the 

class of extremally disconnected spaces “belief” may be elegantly characterized as “possibility 

of knowledge” (cf. Stalnaker (2006)). 

 For general topological models, however, 𝐶𝑙𝐼𝑛𝑡 is no longer a good belief operator. Among 

other deficiencies, for spaces that are not extremally disconnected, 𝐶𝑙𝐼𝑛𝑡 is not a normal 

operator, as already observed by Stalnaker (2006). If 𝐶𝑙𝐼𝑛𝑡 is replaced by 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡, most of 

the qualities of 𝐶𝑙𝐼𝑛𝑡 as a good belief operator are preserved. Only axiom (NI) is no longer 

valid. Instead of interpreting belief as “possibility of knowledge,” for the general case belief is 

be taken as 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡 and to be interpreted as “knowledge of possibility of knowledge.”

 In sum, we may consider the operator 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡 as an example of a justified belief operator. 

Reading the operator 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡 as justified belief allows us to use the apparatus of topological 

epistemology for elucidating the Gettier problem that may be considered as the problem of 

how knowledge and justified belief are related.
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4. Topological Models of Weak KB Logic  

and Their JTB Doppelgangers

 In the previous sections we have established the elementary fact that all topological spaces 

(𝑋, 𝑂𝑋) can serve as the carriers of topological models of Stalnaker’s weak logic of knowledge 

and belief, knowledge being represented by the topological interior operator 𝐼𝑛𝑡 and belief 

being represented by 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡. The tandem (𝐼𝑛𝑡, 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡) of operators validates many 

plausible features of the concepts of knowledge and belief and their relations. In particular, all 

axioms of Stalnaker’s KB logic hold except axiom (NI). On the other hand, we already know 

that not all topological spaces (𝑋, 𝑂𝑋) support the JTB-account of knowledge. For the 

topological model of the real line (ℝ,  𝑂ℝ), JTB (1.1) is already known to be invalid. Clearly, 

the counterexample for JTB given in proposition (1.5) is paradigmatic and could be multiplied 

ad libitum. This fact has been considered as sufficient to lay to rest the issue of JTB (cf. 

Williamson (2013)): JTB turns out to be falsified not only by countless informal counterexamples 

(cf. Turri (2012), Borges et al. (2017), Machery (2017)) but also for general formal reasons. 

For some, the existence of formal models of Gettier situations, where knowledge does not 

coincide with justified true belief, is a sufficient reason to lay to rest JTB. 

 But a closer look reveals that things are more complex. First, it should be taken into account 

that JTB is valid for at least some topological models. Actually, we can do much better than to 

rely on the rather trivial and contrived models of JTB mentioned in the introduction. In this 

section we will show that for any topological space (𝑋, 𝑂𝑋) we can canonically construct a 

topological space (𝑋, 𝑂𝑛𝑜𝑑𝑋) “in the neighborhood of (𝑋, 𝑂𝑋)” that is a JTB system, i.e., for 

which knowledge coincides with true belief. This JTB-system (𝑋, 𝑂𝑛𝑜𝑑𝑋) will be called the 

JTB doppelganger of (𝑋, 𝑂𝑋).

(4.1) Proposition. Let (𝑋, 𝑂𝑋) be a topological space with interior operator 𝐼𝑛𝑡. Define a 

topological space (𝑋, 𝑂𝑛𝑜𝑑𝑋) with interior operator 𝐼𝑛𝑡𝑛𝑜𝑑 as follows: 

 𝐼𝑛𝑡𝑛𝑜𝑑(𝐴) := 𝐴 ∩ 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴).

 Then 𝐼𝑛𝑡𝑛𝑜𝑑 is the interior operator of a topology on X that is at least as fine as 𝑂𝑋, i.e., 𝑂𝑋

⊆  𝑂𝑛𝑜𝑑𝑋. Moreover, 𝑂𝑛𝑜𝑑𝑋 = 𝑂𝑛𝑜𝑑𝑛𝑜𝑑𝑋. The topological closure operator 𝐶𝑙𝑛𝑜𝑑 of (𝑋, 𝑂𝑛𝑜𝑑𝑋) 

corresponding to 𝐼𝑛𝑡𝑛𝑜𝑑 is given by 

 𝐶𝑙𝑛𝑜𝑑(𝐴) = 𝐴 ∪ 𝐶𝑙𝐼𝑛𝑡𝐶𝑙(𝐴).
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Proof. See Njåstad (1965, Proposition 2, p. 962), or verify that the Kuratowski axioms are 

satisfied for 𝐼𝑛𝑡𝑛𝑜𝑑 and 𝐶𝑙𝑛𝑜𝑑.♦
13

Proposition (4.1) opens a rich reservoir of topological JTB-models: 

(4.2) Theorem. Let (𝑋, 𝑂𝑛𝑜𝑑𝑋) be the topological space defined in (4.1) by 𝐼𝑛𝑡𝑛𝑜𝑑, 𝐴 ∈ 𝑃𝑋. 

Denote the belief operator defined on (𝑋, 𝑂𝑛𝑜𝑑𝑋) by 𝐼𝑛𝑡𝑛𝑜𝑑𝐶𝑙𝑛𝑜𝑑𝐼𝑛𝑡𝑛𝑜𝑑. Then (𝑋, 𝑂𝑛𝑜𝑑𝑋) is a 

JTB-system with respect to 𝐼𝑛𝑡𝑛𝑜𝑑 and 𝐼𝑛𝑡𝑛𝑜𝑑𝐶𝑙𝑛𝑜𝑑𝐼𝑛𝑡𝑛𝑜𝑑: 

 𝐴 ∩ 𝐼𝑛𝑡𝑛𝑜𝑑𝐶𝑙𝑛𝑜𝑑𝐼𝑛𝑡𝑛𝑜𝑑(𝐴) = 𝐼𝑛𝑡𝑛𝑜𝑑(𝐴).

Proof. The proof consists of an elementary calculation using well-known results of the 

concatenations of the topological operators 𝐼𝑛𝑡 and 𝐶𝑙 and the less well known technical result 

of Kuratowski and Mostowski (2.3). To simplify the notation the abbreviations 𝐼 := 𝐼𝑛𝑡, 𝐶 :=

𝐶𝑙, 𝐼’ := 𝐼𝑛𝑡𝑛𝑜𝑑, and 𝐶’ := 𝐶𝑙𝑛𝑜𝑑 are used. Then by definition we have 𝐶’(𝐴) = 𝐴 ∪ 𝐶𝐼𝐶(𝐴) and 

we can prove for all 𝐴 ∈ 𝑃𝑋: 

𝐴 ∩ 𝐼𝑛𝑡𝑛𝑜𝑑𝐶𝑙𝑛𝑜𝑑𝐼𝑛𝑡𝑛𝑜𝑑(𝐴)  

= 𝐴 ∩ 𝐼’𝐶’(𝐴 ∩ 𝐼𝐶𝐼(𝐴))  

= 𝐴 ∩ 𝐼’((𝐴 ∩ 𝐼𝐶𝐼(𝐴))∪ 𝐶𝐼𝐶(𝐴 ∩ 𝐼𝐶𝐼(𝐴))) 

= 𝐴 ∩ 𝐼’((𝐴 ∩ 𝐼𝐶𝐼(𝐴))∪ 𝐶(𝐼𝐶(𝐴) ∩ 𝐼𝐶𝐼𝐶𝐼(𝐴))) 

= 𝐴 ∩ 𝐼’((𝐴 ∩ 𝐼𝐶𝐼(𝐴))∪ 𝐶𝐼𝐶𝐼(𝐴)))  

= 𝐴 ∩ 𝐼’((𝐴 ∩ 𝐼𝐶𝐼(𝐴))∪ 𝐶𝐼(𝐴)))  

= 𝐴 ∩ 𝐼’((𝐴∪ 𝐼𝐶𝐼(𝐴)) ∩ 𝐶𝐼(𝐴))  

= 𝐴 ∩ 𝐼’(𝐶𝐼(𝐴))  

= 𝐴 ∩ 𝐶𝐼(𝐴) ∩ 𝐼𝐶𝐼𝐶𝐼(𝐴)  

= 𝐴 ∩ 𝐼𝐶𝐼(𝐴)  

= 𝐼𝑛𝑡𝑛𝑜𝑑(𝐴).♦

 Theorem (4.2) shows that there are many JTB-systems: Every ordinary topological system 

(𝑋, 𝑂𝑋) gives rise to a topological JTB-system (𝑋, 𝑂𝑛𝑜𝑑𝑋) defined on the same underlying set 

𝑋. (𝑋, 𝑂𝑛𝑜𝑑𝑋) is obtained by slightly changing the original topological operator 𝐼𝑛𝑡 to the finer 

topological operator 𝐼𝑛𝑡𝑛𝑜𝑑. Theorem (4.2) can be further strengthened:

13 Njåstad and others call the topology (𝑋, 𝑂𝑛𝑜𝑑𝑋) the “α-topology” of (𝑋, 𝑂𝑋). Therefore, nodec 
spaces are just α spaces.



22

THOMAS MORMANN

(4.3) Theorem. Let (𝑋, 𝑂𝑛𝑜𝑑𝑋) be the nodec doppelganger of (𝑋, 𝑂𝑋) defined in (4.1). Then  

𝐼𝑛𝑡𝑛𝑜𝑑𝑛𝑜𝑑(𝐴) = 𝐼𝑛𝑡𝑛𝑜𝑑(𝐴) and 𝐼𝑛𝑡𝑛𝑜𝑑𝐶𝑙𝑛𝑜𝑑𝐼𝑛𝑡𝑛𝑜𝑑 = 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡.

Proof. The proof for the first assertion is just a restatement of (4.2):

 𝐼𝑛𝑡𝑛𝑜𝑑𝑛𝑜𝑑(𝐴) = 𝐴 ∩ 𝐼𝑛𝑡𝑛𝑜𝑑𝐶𝑙𝑛𝑜𝑑 𝐼𝑛𝑡𝑛𝑜𝑑(𝐴) = 𝐴 ∩ 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴) = 𝐼𝑛𝑡𝑛𝑜𝑑(𝐴).  

The proof of the second condition consists of a direct calculation analogous to that in the proof 

of (4.2):

𝐼’𝐶’𝐼’(𝐴)  

= 𝐼’𝐶’(𝐴 ∩ 𝐼𝐶𝐼(𝐴))  

= 𝐼’((𝐴 ∩ 𝐼𝐶𝐼(𝐴))∪ 𝐶𝐼𝐶(𝐴 ∩ 𝐼𝐶𝐼(𝐴))) 

= 𝐼’((𝐴 ∩ 𝐼𝐶𝐼(𝐴))∪ 𝐶(𝐼𝐶(𝐴) ∩ 𝐼𝐶𝐼𝐼𝐶𝐼(𝐴))) 

= 𝐼’((𝐴 ∩ 𝐼𝐶𝐼(𝐴))∪ 𝐶𝐼𝐶𝐼(𝐴)))  

= 𝐼’((𝐴 ∩ 𝐼𝐶𝐼(𝐴)∪ 𝐶𝐼(𝐴))  

= 𝐼’𝐶𝐼(𝐴) 

= 𝐶𝐼(𝐴) ∩ 𝐼𝐶𝐼𝐶𝐼(𝐴)  

= 𝐼𝐶𝐼(𝐴)  

= 𝐴 ∩ 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴).♦

 Recall that for a topological space (𝑋, 𝑂𝑋) a set 𝐴 ∈ 𝑃𝑋 is called regular open iff 𝐼𝑛𝑡𝐶𝑙𝐴 =

𝐴. The set of regular open sets is denoted by 𝑂*𝑋. Clearly, 𝑂*𝑋 ⊆  𝑂𝑋. It is well known that 

𝑂*𝑋 is a Boolean algebra: Let 𝐴, 𝐵 ∈ 𝑂*𝑋 and define the operations ∧* and ∨* on 𝑂*𝑋 by 

  𝐴 ∧* 𝐵 := 𝐴 ∩ 𝐵 and  𝐴 ∨* 𝐵 := 𝐼𝑛𝑡𝐶𝑙(𝐴 ∪ 𝐵).

 Theorems (4.2) and (4.3) entail that the topological spaces (𝑋, 𝑂𝑋) and (𝑋, 𝑂𝑛𝑜𝑑𝑋) have 

very similar regular open structures: 

(4.4) Corollary. 
(i) The Boolean algebras 𝑂*𝑋 and 𝑂𝑛𝑜𝑑*𝑋 of regular open subsets of the spaces (𝑋, 𝑂𝑋) 

and (𝑋, 𝑂𝑛𝑜𝑑𝑋) coincide, i.e., 𝑂*𝑋 = 𝑂𝑛𝑜𝑑*𝑋.

(ii) The extensional difference between 𝐼𝑛𝑡(𝐴) and 𝐼𝑛𝑡𝑛𝑜𝑑(𝐴) is nowhere dense for all 𝐴
∈  𝑃𝑋.
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Proof. 
(i) By (4.3) and the definition of the Boolean algebras of regular open subsets one has 

 𝑂*𝑋 = {𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴); 𝐴 ∈ 𝑃𝑋} = {𝐼𝑛𝑡𝑛𝑜𝑑𝐶𝑙𝑛𝑜𝑑𝐼𝑛𝑡𝑛𝑜𝑑(𝐴); 𝐴 ∈  𝑃𝑋} = 𝑂𝑛𝑜𝑑𝑋*.

(ii) By (2.3) and (2.4) one calculates for all propositions A:

𝐼𝑛𝑡𝐶𝑙(𝐼𝑛𝑡𝑛𝑜𝑑(𝐴) ∩ 𝐼𝑛𝑡(𝐴)𝐶)  

= 𝐼𝑛𝑡𝐶𝑙(𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴) ∩ 𝐴 ∩ 𝐼𝑛𝑡(𝐴)𝐶)  

= 𝐼𝐶(𝐼𝐶𝐼(𝐴) ∩ 𝐴 ∩ 𝐼(𝐴)𝐶) 

= 𝐼𝐶𝐼(𝐴) ∩ 𝐼𝐶(𝐴 ∩ 𝐼(𝐴)𝐶)  

= 𝐼𝐶(𝐼(𝐴) ∩ 𝐼(𝐴)𝐶)  

= 𝐼𝐶(∅)  

= ∅.♦

 Succinctly expressed, one may say that (𝑋, 𝑂𝑋) and its nodec doppelganger (𝑋, 𝑂𝑛𝑜𝑑𝑋) are 

very similar. The following, however, shows that they differ in one essential epistemological 

feature:

(4.5) Corollary. The topological doppelganger (𝑋, 𝑂𝑛𝑜𝑑𝑋) of (𝑋, 𝑂𝑋) is free of Gettier 

situations, i.e., for all propositions 𝐴 ∈ 𝑃𝑋 one has 𝐺(𝐴) = ∅. In other words, for all worlds 𝑤 

∈  𝑋, knowledge 𝐼𝑛𝑡(𝐴) and justified true belief 𝐴 ∩ 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴) coincide. 

Proof. Using the same abbreviations as in (4.2) one has 

𝐺(𝐴)  

= 𝐴 ∩ 𝐼𝐶𝐼(𝐴) ∩ (𝐴 ∩ 𝐼𝐶𝐼(𝐴))𝐶 

= (𝐴 ∩ 𝐼𝐶𝐼(𝐴)) ∩ 𝐴𝐶) ∪ (𝐴 ∩ 𝐼𝐶𝐼(𝐴)) ∩ 𝐼𝐶𝐼(𝐴)𝐶)  

= ∅ ∪ ∅  

= ∅.♦

 Corollary (4.5) can be used to achieve a kind of topological dissolution of the problem that 

the result of Gettier poses for the epistemology of knowledge and belief. 
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 Our starting point is a critical assessment of a well-known argument of Baltag et al. (2019), 

according to which the semantics of belief based on the closure-interior belief operator 𝐶𝑙𝐼𝑛𝑡 

is preferable to Steinvold’s semantics (cf. Steinsvold (2006)) for belief based on the co-derived 

set operator, since the latter falls prey to the well-known Gettier counterexamples:

Where knowledge as the interior and belief as the co-derived set operator are studied 
together, we obtain the equality 

 𝐾𝐴 = 𝐴 ∩ 𝐵𝐴, 

stating that knowledge is true belief. Therefore, this semantics yields a formalization of 
knowledge and belief that is subject to well-known Gettier counterexamples. … The 
closure-interior belief semantics improves on the co-derived set semantics for the 
following reasons: (1) belief as the closure of the interior operator does not face the 
Gettier problem, at least not in the easy way in which the co-derived set semantic does, 
when considered with the conception of knowledge as interior. More precisely, 
knowledge as interior cannot be defined as (justified) true full belief, since, in general , 
𝐼𝑛𝑡(𝐴) ≠ 𝐶𝑙𝐼𝑛𝑡(𝐴) ∩ 𝐴, i.e., 𝐾𝐴 ≠  𝐵𝐴 ∧ 𝐴; (2) the class of DSO-spaces with respect to 
which KD45 is sound and complete under the co-derived set semantics is a proper 
subclass of the class of extremally disconnected spaces, which shows that the closure-
interior semantics for KD45 is defined on a larger class of spaces. (Baltag et. al. (2019), 
pp. 219, 224–225). 

Note that the semantics 𝐶𝑙𝐼𝑛𝑡 may also fall prey to Gettier counterexamples: it is easily shown 

that the nodec doppelganger (𝑋, 𝑂𝑛𝑜𝑑𝑋) of an ED space (𝑋, 𝑂𝑋) is still an ED space. Hence, 

(𝑋, 𝑂𝑛𝑜𝑑𝑋) is a model of JTB. There are, fortunately, also ED spaces that are not nodec. For 

instance, it is well known that topological spaces that are Stone-dual to complete Boolean 

algebras are extremally disconnected, such as the Stone–Čech compactification 𝛽(ℕ) of the set 

of natural numbers with a discrete topology (cf. Baltag et al. (2019), p. 215). It can be shown 

that these extremally disconnected spaces are not nodec. In other words, in contrast to co-

derivational semantics, the 𝐶𝑙𝐼𝑛𝑡 semantics does not always fall prey to Gettier counterexamples. 

This is to be considered as a real advantage of 𝐶𝑙𝐼𝑛𝑡 semantics.

 More generally, the simultaneous discussion of different topologies (𝑋, 𝑂𝑋) and (𝑋, 𝑂𝑛𝑜𝑑𝑋) 

on the same underlying universe 𝑋 is an argument in favor of an epistemological strategy that 

takes topology as a variable that can have different values depending on the specifics of the 

epistemic situation considered. That is to say, the “transformations” from (𝑋, 𝑂𝑋) to (𝑋, 𝑂𝑛𝑜𝑑𝑋) 
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and vice versa (or similar ones) should not only be shown to be possible. Rather, it is to be 

discussed when and why it is expedient to carry them out out for some reason or other. This 

brings into play pragmatic considerations.

 It is also interesting to consider what happens when we go beyond the class of extremally 

disconnected spaces. First, note that for spaces that are not extremally disconnected the 

operator 𝐼𝑛𝑡𝐶𝑙 is not an acceptable belief operator, since it is not a normal operator. This was 

pointed out by Stalnaker (2006, p. 195). Therefore, this operator has to be replaced by 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡 

(Mormann (2023)). This is an innocent change, since 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡 and 𝐶𝑙𝐼𝑛𝑡 coincide on 

extremally disconnected spaces. Moreover, 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡 is a normal operator, and (𝐼𝑛𝑡, 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡) 

satisfies all rules and axioms of KB except, of course, axiom (NI). Finally, it can be proved that 

for (ℝ,  𝑂ℝ) and similar spaces, 𝐼𝑛𝑡(𝐴) ≠ 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴) ∩ 𝐴, i.e., 𝐾𝐴 ≠  𝐵𝐴 ∧ 𝐴. In sum, the 

interior-closure-interior belief operator 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡 is also not subject to Gettier counterexamples 

in general. Only for nodec spaces does (𝐼𝑛𝑡, 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡) semantics falls prey to the Gettier 

paradox, since for this class of spaces one has 𝐼𝑛𝑡(𝐴) = 𝐴 ∩ 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴) for all propositions 

𝐴, i.e., 𝐾(𝐴) = 𝐴 ∩ 𝐵(𝐴) in the terminology of Baltag et al. (2019). For the belief-fragment 

defined by 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡 one finds that it is a KD4*-logic.

 The topological approach not only shows that (𝐼𝑛𝑡, 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡) does not in general succumb 

to the Gettier counterexamples, it also explains the exceptional character of Gettier situations 

𝐺(𝐴). This may be succinctly formulated by saying that the topological approach of this paper 

“explains away the Gettier problem” by offering an explanation for the exceptional character 

of Gettier situations: 

(1)  Gettier situations 𝐺(𝐴) are topologically characterized as nowhere dense. In informal 

language this means that for most worlds 𝑥 ∈ 𝑋 the traditional JTB account holds.

(2)   Gettier situations are dependent on the agent’s knowledge situation: if the agent knew 

a little more, i.e., if they were located in (𝑋, 𝑂𝑛𝑜𝑑𝑋) and not in (𝑋, 𝑂𝑋), they would not 

experience a Gettier situation with respect to a proposition 𝐴.

(3)  Being in a Gettier situation 𝑥 ∈ 𝐺(𝐴) with respect to a proposition 𝐴 remains cognitively 

opaque or doxastically intransparent to the agent, i.e., they neither know nor believe 𝑥 

to be in such a situation, since 𝐼𝑛𝑡(𝐺(𝐴)) = ∅ and 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐺(𝐴)) = ∅.

 For any topological space (𝑋, 𝑂𝑋) there exists a nodec doppelganger (𝑋, 𝑂𝑛𝑜𝑑𝑋) with very 

similar features (possessing the same sets 𝑃𝑋 of propositions and even the same Boolean 

lattice 𝑂*(𝑋) of regular open sets). Nevertheless, in 𝑂𝑛𝑜𝑑𝑋 a cognitive agent is not confronted 

with Gettier situations. That is to say, being a Gettier proposition is a rather volatile feature of 
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a proposition 𝐴. This is in line with the general feeling that many people have if they are 

confronted with a Gettier situation; they assess it as a somehow strange and weird situation. 

Even if this assessment is rather vague and imprecise, an adequate formal reconstruction of the 

situation should reflect this widespread assessment. This desideratum suggests a different 

attitude toward the problem of Gettier situations that contributes to its dissolution. The 

existence of Gettier situations as exceptional situations should be accepted. 

 Usually, for a topological model (𝑋, 𝑂𝑋) there are some propositions A that give rise to 

Gettier situations, 𝐺(𝐴) ≠  ∅. Extensionally, the set 𝐺(𝐴) is negligible or exceptional in a 

precise topological sense, namely 𝐺(𝐴) is nowhere dense, i.e., 𝐼𝑛𝑡𝐶𝑙(𝐺(𝐴)) = ∅. 

 The elusive nature of Gettier situations 𝐺(𝐴) is further confirmed by the fact that a small 

enlargement of the cognitive capacity (which amounts to a refinement of the topological 

structure from 𝑂𝑋 to 𝑂𝑛𝑜𝑑𝑋) suffices to remove the Gettier situation caused by 𝐴. Seen from the 

perspective of possibly improving our intellectual capacity (or reducing our ignorance), a 

Gettier situation is little more than a temporary disturbance that can in principle be overcome. 

A cognitive agent α may be said to “feel cognitively at home” in a universe of possible worlds 

(𝑋, 𝑂𝑋) if for all propositions 𝐴 ∈ 𝑃𝑋 one has 𝐺(𝐴) = ∅, i.e., if (𝑋, 𝑂𝑋) is nodec. To “feel 

cognitively at home” in 𝑋 it is not necessary that α is an omniscient deity, it suffices for α’s 

knowledge that the equation 𝑂𝑋 = 𝑂𝑛𝑜𝑑𝑋 holds. 

 The traditional JTB account of knowledge is “almost correct” in so far as for all propositions 

A the sets of Gettier situations 𝐺(𝐴), where JTB does not hold, are exceptional situations in the 

sense that the sets are nowhere dense, i.e., topologically “thin” or “small.”14 Moreover, even 

the exceptional character of these situations could be eliminated by improving α’s knowledge 

replacing 𝑂𝑋 by 𝑂𝑛𝑜𝑑𝑋. 

 This possibility may be considered as a topological dissolution of the Gettier problem of 

epistemology: the Gettier phenomenon is recognized as such, namely that there may be 

propositions 𝐴 ∈ 𝑃𝑋 for which JTB does not hold, but at the same time the possibilities for 

overcoming these situations are presented. 

14 In the technical jargon of topology, the family of nowhere dense subsets of a topological space (𝑋, 
𝑂𝑋) is characterized as an ideal (cf. Kuratowski (1966), Jankovic and Hamlett (1990)). Ideals are 
families of “small” or “negligible” sets. By the definition of an ideal, the finite unions of “small” 
sets are “small” and the subsets of “small” subsets are “small.” This is a rather innocent, almost 
trivial “theory” that should raise no controversies even in “philosophical discussions.” Nevertheless, 
it has become quite useful in many applications of topology. For the problem of Gettier 
counterexamples, this theory asserts that the extension of Gettier situations, i.e., situations in which 
knowledge does not coincide with justified true belief, is topologically small. 
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 Thereby, topological epistemology “explains away” the Gettier problem. Here, “explaining 

away” does not mean that the Gettier counterexamples “disappear” in some miraculous way. 

Rather, there is a different way to live with them. Namely if one is content to have available a 

rather simple epistemological theory that works in most cases (Gettier cases are rare!), one 

may stick to JTB. Topologically this means that one makes the strong idealizing assumption 

that one’s topological models of knowledge and belief are nodec spaces. If one is not prepared 

to make such a strong assumption concerning the epistemic structure of the universe, for this 

more realistic stance the cost is the acceptance of (rare) Gettier situations where the simple 

JTB theory fails. 

 For this way of “explaining away,” we need not find a waterproof “fourth condition” of 

knowledge. After 60 years of obtaining less than fully convincing results, many people consider 

this endeavor as hopeless. The 60 years of post-Gettier epistemology has shown that ever more 

complicated definitions of knowledge (taking into account a “fourth condition”) have only 

evoked ever more complicated counterexamples designed to defeat any allegedly definitive 

characterization of knowledge as JTB+X. To “explain away” the Gettier problem it is not 

necessary to find such a, perhaps unattainable, fourth condition X. 

 I propose to interpret the move from (𝑋, 𝑂𝑋) to (𝑋, 𝑂𝑛𝑜𝑑𝑋) as a “learning process.” This 

learning process is to be distinguished from the one elaborated in Baltag et al. (2017, 2019). In 

these papers, a different kind of “learning process” is conceived of as an addition of modal 

operators 𝐵𝜑. In contrast, in the present paper a “learning process” is understood as an addition 

of knowledge: a cognitive agent who uses 𝑂𝑛𝑜𝑑𝑋 and not 𝑂𝑋 has more knowledge available for 

their cognitive actions than one for whom only 𝑂𝑋 is available as knowledge.

 This extra knowledge can be described as the result of a learning process that the agent has 

completed by replacing 𝑂𝑋 by 𝑂𝑛𝑜𝑑𝑋. It can be precisely described as follows. After completing 

this learning process, the cognitive agent knows all propositions (or facts) 𝐴 of 𝑂𝑛𝑜𝑑𝑋 ⊆ 𝑃𝑋. As 

is well known, this the case iff 

(4.6) 𝐴⊆ 𝐶𝑙𝐼𝑛𝑡(𝐴) and 𝐴 ⊆ 𝐼𝑛𝑡𝐶𝑙(𝐴)

(cf. Reilly and Vamanamurthy (1985)). For the Euclidean line (ℝ,  𝑂ℝ), an elementary example 

of a set 𝐴 that is open relative to 𝑂𝑛𝑜𝑑𝑋 but not relative to 𝑂𝑋 is given:

(4.7) Example. Let (ℝ,  𝑂ℝ) be the real line with the standard Euclidean topology 𝑂ℝ. For 

 𝐴 := ℝ − {1/𝑛; 𝑛 = 1,  2,  …}
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we have 𝐶𝑙𝐼𝑛𝑡(ℝ) = ℝ and 𝐼𝑛𝑡𝐶𝑙(𝐴) = ℝ. This means that 𝐴∈ 𝑂𝑛𝑜𝑑ℝ, and therefore 𝐼𝑛𝑡(𝐴) =

𝐴 ∩ 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴), i.e., 𝐴 ∈ 𝑂𝑛𝑜𝑑ℝ, but 𝐴 is not open with respect to 𝑂ℝ, since we have 𝐼𝑛𝑡(𝐴)

= ℝ −  ({1/𝑛} ∪ {0}) ≠ 𝐴. This example is typical for nodec spaces in so far as it is well known 

that these spaces can be characterized as those for which all nowhere dense subsets are closed. 

The space (ℝ,  𝑂ℝ) is not nodec, since there are nowhere dense sets such as {1/𝑛; 𝑛 = 1, 2, …}

that are not closed in (ℝ,  𝑂ℝ). In (ℝ,  𝑂𝑛𝑜𝑑ℝ), however, the set {1/𝑛; 𝑛 = 1, 2, …} is closed.

 Stipulating that all nowhere dense sets are closed amounts to a considerable simplification 

of the topological structure. Epistemologically interpreted, this simplification is a global 

assumption about the knowability of the facts of the universe (𝑋, 𝑂𝑋).♦

 Thus, nodec spaces are not just a niche where the traditional JTB epistemology can survive 

when belief is based on the operator 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡 (interpreting “belief” as “knowledge of not 

knowing that one does not know”). Rather, nodec spaces are also a means of explaining the 

exceptional character of Gettier situations. Thereby, they simultaneously take into account the 

unavoidable limitations and shortcomings of the JTB account and, at the same time, explain 

why JTB is “almost correct.” In this manner the topological account of this paper avoids the 

alternative proposed by Ichikawa and Steup:

Epistemologists who think that the JTB approach is basically on the right track must 
choose between two different strategies for solving the Gettier problem. The first is to 
strengthen the justification condition to rule out Gettier cases as cases of justified belief. 
This was attempted by Roderick Chisholm … . The other is to amend the JTB analysis 
with a suitable fourth condition, a condition that succeeds in preventing justified true 
belief from being “gettiered.” Thus amended, the JTB analysis becomes a JTB+X account 
of knowledge, where the “X” stands for the needed fourth condition. (Ichikawa and 
Steup (2017, section 4))

 The topological approach of the present paper offers an argument in favor of not participating 

in either of these two strategies: it does not intend to strengthen the justification condition nor 

does it intend to find the missing “fourth condition” for knowledge. Rather, it attempts to 

circumvent the Gettier problem by acknowledging the traditional JTB epistemology as “almost 

correct.” More precisely, JTB is “almost correct” in the sense that “almost correct“ is “correct 

except in exceptional circumstances.” This paper renders precise what is to be understood by 

“exceptional circumstances” which are, usually and correctly, ascribed to Gettier situations 

𝐺(𝐴).
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 Corollaries (4.4) and (4.5) offer — in principle — a way to remove the Gettier cases that in 

general beset topological models (𝑋, 𝑂𝑋) of weak KB. If the cognitive agent who employs 𝐼𝑛𝑡 

and 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡 for their doxastic and epistemic actions improves their knowledge operator from 

𝐼𝑛𝑡 to 𝐼𝑛𝑡𝑛𝑜𝑑 and maintains their method of justified belief as 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡, then they can avoid 

being confronted with Gettier cases. In other words, Gettier situations could be avoided iff the 

agent improves their epistemic powers. 

 The spaces (𝑋, 𝑂𝑋) and (𝑋, 𝑂𝑛𝑜𝑑𝑋) may be conceived as the two stages of a learning 

process. The initial stage is topologically characterized by (𝑋, 𝑂𝑋). This stage is beset with 

epistemic anomalies, namely Gettier situations 𝐺(𝐴) ≠  ∅. It finds its ideal end in the universe 

(𝑋, 𝑂𝑛𝑜𝑑𝑋) that is free of Gettier situations. This means that the cognitive agent who uses 𝐼𝑛𝑡𝑛𝑜𝑑 

knows enough to avoid any Gettier situation for which knowledge differs from true justified 

belief.

 Epistemologically, nodec spaces are characterized as the appropriate class of topological 

models for traditional JTB-epistemology which ignores the existence of Gettier situations. 

This may be considered as a partial rehabilitation of the JTB-account by topological 

epistemology. 

 The relation between the class of all topological spaces 𝑇𝑂𝑃(𝑋) on 𝑋 and the class of 

nodec spaces 𝑇𝑂𝑃𝑛𝑜𝑑(𝑋) defined on 𝑋 may be described as follows: 

(4.8) Proposition. The class 𝑇𝑂𝑃𝑛𝑜𝑑(𝑋) of nodec spaces on 𝑋 is a subclass of 𝑇𝑂𝑃(𝑋) such 

that the natural embedding 𝑖:𝑇𝑂𝑃𝑛𝑜𝑑(𝑋)→𝑇𝑂𝑃(𝑋) has a left inverse 𝑗:𝑇𝑂𝑃(𝑋)→𝑇𝑂𝑃𝑛𝑜𝑑(𝑋)

(“nodecification”) that maps every topological space (𝑋, 𝑂𝑋) onto its nodec doppelganger (𝑋, 

𝑂𝑛𝑜𝑑𝑋) such that 𝑇𝑂𝑃𝑛𝑜𝑑(𝑋)→𝑇𝑂𝑃(𝑋)→𝑇𝑂𝑃𝑛𝑜𝑑(𝑋) is the identity map id on 𝑇𝑂𝑃𝑛𝑜𝑑(𝑋).♦

 In more general terms, the logical relation between the two classes 𝑇𝑂𝑃(𝑋) and 𝑇𝑂𝑃𝑛𝑜𝑑(𝑋) 

of spaces can be further explicated as follows. Let 𝐾 ⊆ 𝑇𝑂𝑃 be any class of topological spaces 

(for instance, the class of all topological spaces, the class of extremally disconnected spaces, 

the class of nodec spaces, etc.). Recall that S4 is the least set of formulas of the basic unimodal 

language L with basic modal operator o satisfying the axioms 

(4.9) (i) □(𝜑→𝜓)→(□𝜑→o𝜓), (ii) □𝜑→𝜑, (iii) □𝜑 →□□𝜑

and closed under modus ponens, substitution, and necessitation (𝜑/□𝜑). For a class of 𝐾 of 

topological spaces, let 𝐿(𝐾) denote the set of formulas of 𝐿 that are valid in 𝐾, interpreting the 

formulas of 𝐿 in the familiar way (see 3.4). 𝐿(𝐾) is called the modal logic of 𝐾. Since the 
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classical result of McKinsey and Tarski (1944) it has been well known that the modal logic of 

the class of all topological spaces 𝑇𝑂𝑃 is S4. 

 In the past two decades the modal logics of many subclasses of 𝑇𝑂𝑃 have been determined 

(see Bezhanishvili et al. (2004)). For topological epistemology the extension S4.2 of S4 is 

particularly interesting. As shown by Stalnaker (2006) and Baltag et al. (2019), S4.2 is the 

logic of extremally disconnected topological spaces (𝑋, 𝑂𝑋). Topologically, these spaces can 

be characterized as spaces whose closure operators satisfy 𝐶𝑙(𝐴 ∩ 𝐷) = 𝐶𝑙(𝐴)∩ 𝐶𝑙(𝐷) for 

open sets 𝐴 and 𝐵 (cf. Footnote 7). Expressed in epistemological terms, (𝑋, 𝑂𝑋) is extremally 

disconnected essentially iff axiom (NI) is satisfied and some other less contentious axioms are 

satisfied for 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡 and 𝐼𝑛𝑡 (Baltag et al. (2019)).

 The interesting point is that the class of nodec spaces — as the class of topological spaces 

that satisfy JTB — also corresponds to a well-known extension of S4, namely to S4.Zem (cf. 

Bezhanishvili et al. (2004) and Zeman (1969)). 

 Thus, the status of JTB in topological epistemology may be understood as analogous to that 

of the extension S4.2 of S4, namely as a modal logic in which a special axiom holds: axiom 

S4.Zem (cf. Bezhanishvili et al. (2004), Theorem 3.4). Hence, from the point of view of formal 

topological epistemology, one should not ask simpliciter whether JTB is true or not. Rather, a 

more appropriate question is to ask for which class of topological models JTB is true. The neat 

answer to this question is that JTB holds for nodec models. This assertion is analogous to the 

statement that the topological knowledge operator 𝐼𝑛𝑡 satisfies the axioms of Stalnaker’s 

combined logic KB (axiom (NI) included) iff the topological universe of possible worlds (𝑋, 

𝑂𝑋) has the topological structure of an extremally disconnected space. Analogously, a 

topological model (𝑋, 𝑂𝑋) satisfies the classical JTB-account of knowledge as justified true 

belief iff it satisfies the Zeman axiom ((□¬□¬□𝑝)→(𝑝→□𝑝)).

(4.10) Proposition. Interpreting □ as the topological interior operator 𝐼𝑛𝑡 and the belief 

operator as 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡, for topological models (𝑋, 𝑂𝑋, 𝑣) the Zeman axiom ((□¬□¬□𝑝)→(𝑝→□𝑝)) 

holds iff the JTB-axiom (1.1) is valid: 𝐼𝑛𝑡(𝐴) = 𝐴 ∩ 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴).

Proof. By definition of the topological interpretation of S4, we have that the characteristic 

axiom ((□¬□¬□𝑝)→(𝑝→□𝑝)) for S4.Zem holds for a topological model (𝑋, 𝑂𝑋, 𝑣) iff 

 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴) ∩ 𝐴⊆ 𝐼𝑛𝑡(𝐴) for all 𝐴 ∈  𝑃𝑋.
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On the other hand, the inequality 𝐼𝑛𝑡(𝐴) ⊆ 𝐴 ∩ 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴) holds from the definition of 𝐼𝑛𝑡 

and well-known properties of 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡 for all topological models (see 2.3). Hence 𝐼𝑛𝑡(𝐴) = 𝐴 

∩ 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴). In other words, (𝑋, 𝑂𝑋) is a nodec space.♦

 The logical characterization of nodec spaces as the class of spaces that satisfy S4.Zem 

establishes an analogy between JTB and other epistemologically interpretable modal logics 

that are defined as normal extensions of S4. The following list of examples of such modal 

logics is far from complete:

(4.11) Example. Some epistemically interpretable modal logics and their classes of 

topological spaces.

(i)  The “logic of clearness” (Bobzien (2012)) is the logic S4.1 = S4 + (□¬□¬𝑝) →

(¬□¬□𝑝). The class of topological models of S4.1 is the class of McKinsey spaces. 

(ii)  Stalnaker’s combined logic of knowledge and belief KB (satisfying the rules and 

axioms (3.1) with (NI) included)) is the logic S4.2. The class of topological models of 

S4.2 is the class of extremally disconnected spaces. 

(iii)  The traditional epistemic logic JTB of knowledge as justified true belief is the logic S4. 

Zem = S4 + ((□¬□¬□𝑝→(𝑝→□𝑝)). The class of topological models of S4 .Zem is the 

class of nodec spaces.♦

 In sum, topological epistemology suggests a relativization of the question of whether the 

traditional thesis that knowledge is justified true belief is correct or not. The answer to this 

question depends on the class of topological models chosen. Thus, traditionalists such as 

Sellars (see Section 6) who insist that traditional JTB is essentially correct should subscribe to 

S4.Zem as the appropriate logic for the epistemology of knowledge and belief, and those who 

acknowledge Gettier counterexamples will choose another extension of S4 as the appropriate 

logic of knowledge and belief. For instance, if they insist on (NI) as a necessary condition for 

a good belief operator they will choose S4.2.
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5. Topology of Gettier Cases: A Topological “Double Luck” 

Construction and the Doxastic Invisibility of Gettier Situations

 The previous section dealt with the topological and logical problems of a very special class 

of topological epistemological systems, namely systems for which the traditional account of 

knowledge as justified true belief is valid. As mentioned, since Gettier’s paper this account has 

come under heavy attack. Nevertheless, some philosophers still doubt that Gettier cases have 

definitively refuted the traditional JTB-account. Nodec spaces may be considered as a niche 

where the traditional JTB-account can survive. Topological epistemology provides a relative 

justification of JTB. 

 This section intends to show that topological epistemology is also useful for bringing to the 

fore some interesting formal aspects of Gettier situations that have seldom or never been 

noticed in the decades during which the production of ever more sophisticated Gettier examples 

has flourished. First, let us consider the obvious but nevertheless somewhat enigmatic aspect 

of Gettier cases that they are exceptional or rare. Topology is an expedient device for rendering 

precise this impression. 

 Let 𝐴 ∈ 𝑃𝑋 be a proposition that describes a situation as a set of possible worlds. Then the 

Gettier proposition 𝐺(𝐴) := 𝐴 ∩ 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴) ∩ 𝐼𝑛𝑡(𝐴)𝐶 is a rare event in a precise topological 

sense:

(5.1) Theorem. 
(i) For all topological spaces (𝑋, 𝑂𝑋) and all 𝐴 ∈ 𝑃𝑋, the set 𝐺(𝐴) of Gettier worlds for 

𝐴 is nowhere dense, i.e., 𝐼𝑛𝑡𝐶𝑙(𝐺(𝐴)) = ∅:

 𝐼𝑛𝑡𝐶𝑙(𝐺(𝐴)) = 𝐼𝑛𝑡𝐶𝑙(𝐴 ∩ 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴) ∩ 𝐼𝑛𝑡(𝐴)𝐶) = ∅. 

(ii) For all nodec spaces (𝑋, 𝑂𝑛𝑜𝑑𝑋), one obtains the stronger result 𝐺(𝐴) = ∅ for all 𝐴 ∈ 
𝑃𝑋.

Proof. 
(i) Using once again the abbreviations of (4.2) and the technical lemma (2.3) one 

calculates: 

𝐼𝐶(𝐺(𝐴))  

= 𝐼𝐶(𝐴 ∩ 𝐼𝐶𝐼(𝐴) ∩ 𝐼(𝐴)𝐶)  
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= 𝐼𝐶𝐼𝐶𝐼(𝐴) ∩ 𝐼𝐶(𝐴 ∩ 𝐼(𝐴)𝐶) 

= 𝐼𝐶𝐼𝐶𝐼(𝐴) ∩ 𝐼𝐶(𝐴 ∩ 𝐼(𝐴)𝐶)  

= 𝐼𝐶𝐼(𝐴) ∩ 𝐼𝐶(𝐴 ∩ 𝐼(𝐴)𝐶) 

= 𝐼𝐶(𝐴 ∩ 𝐼𝐶(𝐴) ∩ 𝐼(𝐴)𝐶)  

= 𝐼𝐶(∅)  

= ∅.

(ii) This has already been proved in (4.5).♦

 (5.1) (i) and (ii) confirm the intuitive impression that Gettier situations are rare or 

exceptional events. In the special case of nodec spaces, Gettier situations are extremally rare 

events — they never occur. 

 The fact that Gettier situations are nowhere dense events affects their epistemic status. 

They can be neither known nor believed by cognitive agents who use 𝐼𝑛𝑡 or 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡. 

 The proof that Gettier cases cannot be known by 𝐼𝑛𝑡 is elementary and amounts to a simple 

calculation using some axioms of KB: 

(5.2) Proposition. Let (𝑋, 𝑂𝑋) be a topological model of KB-logic, 𝐴 ∈ 𝑃𝑋, and

 𝐺(𝐴) := 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴) ∩ 𝐴 ∩ 𝐼𝑛𝑡(𝐴)𝐶 

be a Gettier situation of 𝐴. Then 𝐺(𝐴) cannot be known by a cognitive agent who uses the 

operator 𝐼𝑛𝑡, i.e., the cognitive agent is ignorant of 𝐺(𝐴). 

Proof. By definition the Gettier proposition 𝐺(𝐴) is known at a world 𝑤 ∈ 𝑋 iff 𝑤 ∈ 𝐼𝑛𝑡(𝐺(𝐴)). 

An elementary calculation using the Kuratowski axiom (2.3) shows that this is impossible 

since 𝐼𝑛𝑡(𝐺(𝐴)) is empty:

𝐼𝑛𝑡(𝐺(𝐴))  

= 𝐼(𝐼𝐶𝐼(𝐴) ∩ 𝐴 ∩ 𝐼(𝐴)𝐶)  

= 𝐼𝐼𝐶𝐼𝐴) ∩ 𝐼𝐴) ∩ 𝐼(𝐼(𝐴)𝐶)  

= 𝐼(𝐴) ∩ 𝐼(𝐼(𝐴)𝐶) 

= 𝐼(𝐼(𝐴)) ∩ 𝐼(𝐼(𝐴)𝐶)  

= 𝐼(𝐼(𝐴) ∩ 𝐼(𝐴)𝐶)  
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= 𝐼(∅)  

= ∅.♦

 Informally stated, Gettier sentences cannot be known.15 

 Theorem (5.2) can be strengthened by replacing 𝐼𝑛𝑡 by 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡. This is noteworthy in so 

far as 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡 is not factive.

(5.3) Theorem. Let (𝑋, 𝑂𝑋) be a topological model of the weak KB-logic of knowledge and 

belief for the operators 𝐼𝑛𝑡 and 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡 as defined in (3.2). Let 𝐺(𝐴) := 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴) ∩ 𝐴 ∩

𝐼𝑛𝑡(𝐴)𝐶. Then Gettier proposition 𝐺(𝐴) cannot be believed consistently, i.e., there is no world 

where 𝐺(𝐴) can be believed by a cognitive agent who relies on 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡 as justified belief, 

since 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐺(𝐴)) = ∅.

Proof. Suppose that 𝑤 ∈ 𝑋 is a world in which the Gettier case 𝐺(𝐴) ≠  ∅ is believed with 

respect to the belief operator 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡, i.e., 𝑤 ∈ 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴) ∩ 𝐴 ∩ 𝐼𝑛𝑡(𝐴)𝐶) ≠  ∅. 

Then, using the axioms of KB-logic and (2.3) one calculates: 

𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐺(𝐴))  

= 𝐼𝐶𝐼(𝐼𝐶𝐼(𝐴) ∩ 𝐴 ∩ 𝐼(𝐴)𝐶)  

= 𝐼𝐶𝐼𝐼𝐶𝐼)(𝐴) ∩ 𝐼𝐶𝐼(𝐴) ∩ 𝐼𝐶𝐼(𝐼(𝐴)𝐶) 

= 𝐼𝐶𝐼 𝐴 ∩ 𝐼𝐶𝐼(𝐼(𝐴)𝐶)  

= 𝐼𝐶(𝐼(𝐴) ∩ 𝐼(𝐴)𝐶)  

= 𝐼(∅)  

= ∅.

Thus, 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐺(𝐴)) = ∅ for any 𝐴 ∈ 𝑃𝑋, i.e., there is no world w in which one can believe 

with justification that 𝑤  is an 𝐴-world.♦

 For all models, all Gettier situations are topologically rare situations. They may be 

eliminated by improving the cognitive agent’s epistemic capacities, namely, by replacing the 

knowledge operator 𝐼𝑛𝑡 by the finer operator 𝐼𝑛𝑡𝑛𝑜𝑑. This replacement dissolves the cognitive 

anomalies exemplified by 𝐺(𝐴). Moreover, the move from 𝐼𝑛𝑡 to 𝐼𝑛𝑡𝑛𝑜𝑑 is topologically small, 

since the extensional difference between 𝐼𝑛𝑡𝑛𝑜𝑑(𝐴) and 𝐼𝑛𝑡(𝐴) is nowhere dense. Of course, an 

15 For a recent discussion of the logic of ignorance see Fine (2018) and Fano and Graciani (2021).
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omniscient cognitive agent is plagued with Gettier propositions. But omniscience is not a 

realistic aim for epistemic progress. In contrast, the move from (𝑋, 𝑂𝑋) to (𝑋, 𝑂𝑛𝑜𝑑𝑋) is a 

rather modest cognitive improvement that is already sufficient to avoid Gettier cases, since the 

JTB-doppelganger (𝑋, 𝑂𝑛𝑜𝑑𝑋) of (𝑋, 𝑂𝑋) is free of Gettier situations for all propositions 𝐴. 

Both models share the same operator of justified true belief 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡; only their knowledge 

operators 𝐼𝑛𝑡 and 𝐼𝑛𝑡𝑛𝑜𝑑 differ slightly. 

 As has been observed by the “Gettier industry” of the past decades, Gettier examples may 

be constructed according to certain general recipes. As Turri put it:

Gettier cases are constructed by a recipe. Start with a belief sufficiently justified to meet 
the justification requirement for knowledge. Then add an element of bad luck that 
would normally prevent the justified belief from being true. Lastly add a dose of good 
luck that “cancels out the bad,” so the belief ends up true anyhow. (Turri (2012), p. 248)

Turri discusses the following well-known example of double luck adapted from Zagzebski 

(1996) as a classical Gettier case:

 
(HUSBAND) Mary enters the house and looks into the living room. A familiar 
appearance greets her from her husband’s chair. She thinks, “My husband is home,” and 
then walks into the den. But Mary misidentified the man in the chair. It is not her 
husband, but his brother, whom she had no reason to think was even in the country. 
However, her husband was seated along the opposite wall of the living room, out of 
Mary’s sight, dozing in a different chair. (Adapted from Zagzebski (1996), pp. 285–
286)

This recipe of “double luck” has a topological analogue. This evidences that the topological 

model offers a useful, at least partially faithful representation of epistemological phenomena. 

To facilitate a better understanding of the role of topological models in formal epistemology, 

it may be expedient to recall briefly the role of mathematical models in physics. In many 

models of Newtonian mechanics, force (acceleration) 𝑓 is considered as the derivative of 

velocity 𝑣, i.e., 𝑓 = 𝑣’. This does not mean that the mathematical concept of derivative has a 

(causal) role in physical processes. It only means that there is a (partial) structural 

correspondence between the “logic of derivative and the “logic of physical processes.” This 

structural correspondence is exemplified, for instance, by the fact that the law of addition of 

forces has a structural analogue to the mathematical law of vector addition. 



36

THOMAS MORMANN

 To keep matters as simple and intuitive as possible, consider the following example based 

on the two-dimensional Euclidean plane endowed with its familiar Euclidean topology. The 

Euclidean plane may be identified in a natural way with a two-dimensional vector space. Let 

the one-dimensional line ℝ diagonally embedded in ℝ2 be ℝ:={(𝑥, 𝑥); 𝑥 ∈ ℝ}. Let 𝐴 .= ℝ2 - ℝ 

∪ {(0,  0)} and 𝐸 := {(0, 0)} the origin of the plane. Intuitively, the construction of 𝐴 may be 

described as follows: One begins with a class of “ordinary” situations ℝ2, removes a subclass 

of “exceptional” situations ℝ (“bad luck”), and finally adds a class 𝐸  of “exceptional 

exceptions” 𝐸 ⊆ ℝ with 𝐼𝑛𝑡(𝐸 ) = ∅ (“good luck”). The resulting set 𝐴:= ℝ2 - ℝ ∪ 𝐸  may be 

considered as a topological version of the “double luck construction” that Turri and others 

describe as a general recipe for constructing Gettier situations. Indeed, the set 𝐴 turns out to be 

a Gettier situation since one calculates for 𝐺(𝐴): 

(5.4) 𝐺(𝐴) = 𝐴 ∩ 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴) ∩ 𝐼𝑛𝑡(𝐴)𝐶 = {(0, 0)} ≠  ∅.♦16

 

Hence, the 𝐸 -world (0,  0) is a “Gettier world” with respect to 𝐴, i.e., 𝐴 is a justified true belief 

at 𝐸 -worlds but is not known there, since 𝐼𝑛𝑡(𝐺(𝐴)) = ∅. 

 For formal epistemology, the relevant point of the topological model is the topological 

construction of a proposition that has an analogical structure to the construction process 

described informally and implicitly in the fantastic stories of Smith and Jones, fake barns, 

husbands and their brothers, etc., that lead to Gettier situations of various kinds. These 

situations are structurally described by propositions 𝐴 for which knowledge of does not 

coincide with justified true belief:

 𝐼𝑛𝑡(𝐴) ≠ 𝐴 ∩ 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴).

 

 Following Zagzebski’s recipe, the example of fake barns may be reconstructed in a 

topological model by the following correspondence: 

(5.5) (Fake barn example topologized). 

All barns (fake barns or real barns): ℝ2 := {(𝑥, 𝑦); (𝑥, 𝑦) points of the plane}

16  A moment’s reflection reveals that this construction has little to do with the specific structure of 
(ℝ2,  𝑂ℝ2) but can be considerably generalized to arbitrary Hausdorff spaces (𝑋, 𝑂𝑋), i.e., if (𝑋, 
𝑂𝑋) is a Hausdorff space, 𝑤 𝐺 ∈  𝑋, then the subset 𝐴 := 𝑋 × 𝑋 – 𝐷(𝑋) ∪ 𝐷(𝐸 ) is a Gettier situation, 
i.e., 𝐺(𝐴) = 𝐸  is a set of Gettier worlds where 𝐴 is true, believed with justification, but not known. 
Here, of course, 𝐷 is the diagonal function defined as 𝐷:𝑋 → 𝑋 × 𝑋 by 𝐷(𝑥) := (𝑥, 𝑥) for 𝑥 ∈  𝑋. 
Other topological constructions of Gettier situations are easily found.
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Barns in “fake barn country” (fake barns or real barns): ℝ ⊆  ℝ2 

(0, 0) (The only real barn in “fake barn country”): {(0,  0)}⊆  ℝ ⊆  ℝ2

Now define 𝐴 := ℝ2 −  ℝ + {(0,  0)}. Then we easily calculate: 𝐼𝑛𝑡(𝐴) ≠ 𝐴 ∩ 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴).♦

 After admitting that JTB is false in general, it is natural to look for an explanation of why 

JTB had and still has so much attraction in epistemology and common sense. Somehow, JTB 

seems close to being true. Topology offers a formal explanation for this fact. As I want to 

explicate in the following, a reason why JTB has the appeal of being essentially true is that 

counterexamples to JTB, namely, Gettier cases 𝑥 ∈ 𝐺(𝐴) are — as “anomalies” for JTB —

epistemically invisible in a precise sense. Thus, it is unsurprising that many people consider 

JTB as “essentially” correct even though they cannot deny the existence of Gettier situations. 

Moving from (𝑋, 𝑂𝑋) to (𝑋, 𝑂𝑛𝑜𝑑𝑋), thereby eliminating the Gettier situations existing in (𝑋, 

𝑂𝑋), amounts to an extensionally small cognitive improvement that renders traditional JTB 

epistemology valid. 

 The topological account of knowledge and belief confirms Williamson’s thesis, according 

to which JTB is refuted not only by an abundance of informal counterexamples but also by the 

fact that its failure can be predicted on general theoretical grounds. For appropriate topological 

models based on general topological spaces (𝑋, 𝑂𝑋), one can construct Gettier situations 𝐺(𝐴) 

by double luck constructions (or otherwise) that exhibit situations where knowledge does not 

coincide with true justified belief. On the other hand, topological epistemology also offers 

arguments for the assessment that JTB is almost true. It shows that Gettier situations do not 

occur for models based on nodec spaces. Moreover, topological epistemology shows that all 

topological models possess nodec doppelgangers free of Gettier situations. 

6. Concluding Remarks

This paper has dealt with two complementary problems: 

(1)  How can Gettier situations 𝐺(𝐴) be constructed systematically in topological 
epistemology? Answer: Topological double luck constructions (and other devices) 
show the existence of Gettier situations for many topological models (𝑋, 𝑂𝑋).

(2)  How can Gettier situations be avoided systematically for appropriate topological 
universes of possible worlds? Answer: If (𝑋, 𝑂𝑋) is any topological model of 
knowledge and belief whatsoever, its nodec doppelganger (𝑋, 𝑂𝑛𝑜𝑑𝑋) can be shown to 
be free of Gettier situations.
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 Thus, topological models of knowledge and justified belief provide robust evidence that 

traditional JTB-epistemology is not fully correct, independently of contrived thought 

experiments. On the other hand, the existence of JTB-doppelgangers for all topological models 

suggests that the classical JTB-account should not simply be dismissed as an obsolete erroneous 

theory. Rather, JTB offers a simplified account of knowledge and belief that works quite well 

in most cases but fails in exceptional cases. The conceptual surgery that is necessary to 

eliminate Gettier situations from a topological universe (𝑋, 𝑂𝑋) of possible worlds is 

extensionally small in the sense that for all propositions A the difference between 𝐼𝑛𝑡(𝐴) and 

its JTB-doppelganger 𝐼𝑛𝑡𝑛𝑜𝑑(𝐴) is topologically negligible, i.e., nowhere dense. This fact may 

be interpreted as a partial rehabilitation of the classical JTB-account. 

 This rehabilitation is only partial in so far as this topological approach recognizes the 

unavoidability of Gettier situations that are to be considered as exceptional situations or 

anomalies that cannot be handled adequately by the JTB approach. 

 The unknowability and unbelievability of Gettier propositions confirm the impression that 

Gettier cases are somehow exceptional. Topological epistemology has, so to speak, a Janus 

face with respect to JTB: on the one hand it offers a justification for JTB by showing that 

models based on nodec spaces are free of Gettier situations; on the other hand, it provides a 

strict general refutation of the JTB that knowledge is justified true belief by formal mathematical 

arguments. Thereby, topological epistemology may be considered as a useful addition to the 

many informal arguments that often only rely on rather contrived thought experiments. In his 

classical paper “Epistemic Principles,” Sellars (1975) asserted: 

The explication of knowledge as “justified true belief” though it involves many pitfalls 
[,] … is, I believe, essentially sound (Sellars (1975), p. 99)). 

Sellars did not give arguments for his traditionalist assessment of this issue. He simply assumed 

it: 

In the present lecture I shall assume that it can be formulated in such a way as to be 
immune from the type of counterexamples with which it has been bombarded since 
Gettier’s pioneering paper in Analysis. (Sellars (1975), ibid.)

Almost 50 years have passed since Sellars put forward his optimistic assessment that eventually 

a formulation of JTB would be found that is immune to Gettier’s criticism. Today, Sellars’ 

hope seems to be less realistic than ever. Since then, the production of ever more sophisticated 
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counterexamples has continued (cf. Turri (2012), Borges et al. (2017)). Moreover, many 

philosophers have even lost interest in this issue. Topological epistemology offers a way out of 

this deadlock. The topological account of this paper proposes the concept of JTB as one among 

many possible topological versions of epistemological logic, each of which is characterized by 

one or more specific axioms. More precisely, JTB is characterized by the axiom characteristic 

for S4.Zem that can be topologically formulated as

(1.1) 𝐼𝑛𝑡(𝐴) = 𝐴 ∩ 𝐼𝑛𝑡𝐶𝑙𝐼𝑛𝑡(𝐴).

This parallelism between JTB and other modal systems such as S4.1, S4.2, and S4.3 suggests 

that one should no longer ask the simple question: “Is knowledge justified true belief?” but 

rather “What type of topological models validates JTB?” With this modification, at once the 

more modest and more sophisticated question has a neat and satisfying answer: 

(6.1) Theorem. (Restricted validity of the traditional JTB-account of knowledge as 

justified true belief): The JTB-epistemology is valid for topological models based on nodec 

spaces (𝑋, 𝑂𝑛𝑜𝑑𝑋). It is not valid for models that are not nodec.♦

 

 Epistemically, the move from (𝑋, 𝑂𝑋) to (𝑋, 𝑂𝑛𝑜𝑑𝑋) that eliminates all Gettier situations 

𝐺(𝐴) for all propositions 𝐴 ∈ 𝑃𝑋 can be characterized as a learning process that enlarges the 

cognitive powers of the cognitive agent from an initial state of knowledge defined by the 

operator 𝐼𝑛𝑡 to a more comprehensive knowledge defined by the finer operator 𝐼𝑛𝑡𝑛𝑜𝑑. 
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