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Abstract:
In the tradition of memory logic, two comparatively weak systems, poison 
modal logic (PML) and poison sabotage logic (PSL), were studied in existing 
literature to capture the so-called poison game, which originally served as a 
paradigm to reason about graph-theoretical notions and was recently shown to 
have important applications in the theory of abstract argumentation. In this 
work, we continue to explore the technical aspect of the two logics and complete 
the existing results by providing our solutions to the questions identified in the 
literature (Grossi and Rey, 2019a; 2019b; Blando et al., 2020). Precisely, we 
show that (i) neither of them can be embedded in fixed-variable fragment of 
first-order logic, on the basis of the existing findings for PML and PSL, (ii) PSL 
has an undecidable satisfiability problem, and (iii) motivated by the existing 
axiomatization results for the standard memory logic (Areces et al., 2012), we 
axiomatize the two logics in a broader setting with enrichments from hybrid 
logic. As we shall see, in line with the fact that PSL is strictly weaker than PML, 
the calculus for the hybrid PSL developed will also be a ‘fragment’ of that for 
the hybrid PML.
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1	 Poison Games and Memory Logic

	 The poison game is introduced by Duchet and Meyniel (1993) to reason about some graph-

theoretical notions (e.g., the so-called ‘semi-kernels’) in graph theory. It is a zero-sum perfect 

information game played by two players, Mover and Poisoner, on a directed graph (W, R). The 

game is started by Mover that needs to choose a node s from W, and in each round afterwards, 

Poisoner chooses a successor t of the state chosen by Mover in the previous stage (this means 

state t is poisoned), and then Mover selects a non-poisoned state from among the successors of 

t. Poisoner wins if and only if Mover cannot make a legal movement. In addition to its 

applications in graph theory, as indicated in the works of Grossi and Rey (2019a; 2019b), the 

framework also has natural applications in the abstract argumentation theory, in that it can 

determine the existence of credulously admissible sets in an argumentation framework. To 

reason about the game, many efforts have been made to design suitable modal logics fitting 

with the game, referring to the standard memory logic whose language is equipped with tools 

to check whether or not a given state has already been memorized and to memorize a state 

(Areces et al., 2012; Areces et al., 2009; Areces et al., 2011; Areces et al., 2008). In this paper, 

we focus on two existing modal logics for poison games, poison modal logic (PML) and 

poison sabotage logic (PSL), and study their logical properties that provide solutions to 

questions that are left in the literature. However, before we move to the details, let us first 

introduce the existing results for the logics in the literature and identify the questions that we 

will study.

	 The framework PML is independently proposed in the works of Blando et al. (2020) and 

Grossi and Rey (2019a) (and its extension (Grossi and Rey, 2019b)). As shown in the same 

works, there are natural notions of first-order translation and bisimulation for the logic, which 

together lead to a van Benthem style characterization theorem identifying the counterpart of 

the logic in first-order logic (FOL) (Grossi and Rey, 2019b). With the help of these, the logic 

is shown to be strictly weaker than the standard memory logic. Also, PML can be embedded 

into the hybrid logic with nominals and binders (Grossi and Rey, 2019b). So far, many 

properties of the computational behavior of the logic have also been studied: for instance, the 

logic lacks the finite model property, its satisfiability problem is undecidable, and its model-

checking problem is PSPACE-complete.

	 In addition to PML, Blando et al. (2020) also developed the proposal PSL for the purpose 

of designing logical tools with lower computational complexity. Indeed, the logic is strictly 

weaker than PML. Many results for PML can be easily adapted to fit with PSL, including the 
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notions of first-order translation and bisimulation. Moreover, as the case for PML, the model-

checking problem for PSL is shown to be PSPACE-complete.

	 Although many properties of the two logics have been explored, there are still several 

questions involving their technical properties that were identified in the works of Grossi and 

Rey (2019a; 2019b); Blando et al. (2020). In this work, we will provide solutions to the 

following:

•	 Can PML and PSL be embedded into fixed-variable fragments of FOL or not? (Grossi and 

Rey, 2019b)1

•	 Can we have desired Hilbert-style proof systems for PML and PSL? (Grossi and Rey, 

2019b)

•	 Is the satisfiability problem for PSL decidable? (Blando et al., 2020)

As we shall see, with the findings of Blando et al. (2020), we can have a quick, but negative, 

answer to the first question. Also, to provide a solution to the second questions, we extend the 

two logics with devices from hybrid logic, which is motivated by the techniques developed for 

the standard memory logic (Areces et al., 2012). Finally, by encoding the well-known 

undecidable  × -tiling problem, we will offer a negative answer to the last question.

	 Outline. In Section 2, we recall the designs of PML and PSL, identify their ‘minimal base 

logics,’ extend them with nominals and @-operators from hybrid logic, and show that, among 

others, the answer to the first question is negative, referring to existing findings in the literature. 

Then, in Section 3, we prove that the satisfiability problem for PSL is undecidable. Next, 

complete Hilbert-style proof systems for the hybrid augments of PML and PSL are developed 

in Section 4, and finally, Section 5 concludes with several further directions.

2	 Logics for the Poison Game and Their Hybrid Extensions

	 In this part, we first introduce the designs of PML and PSL. Then, we define the 

corresponding minimal logics, show the definitions of their hybrid extensions and study some 

of their basic properties, whereby we will have an answer to the question whether or not the 

two logics can be embedded in fixed-variable fragments of FOL. We start with the language of 

PML.

1	 This question and the second one below are asked only for PML in the work of Grossi and Rey 
(2019b), but they also make sense for PSL.
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Definition 1. Let Prop be a countable set of propositional letters. The language M for PML is 

given in the following manner:

 M ∋ φ ::= p | p | ¬φ | φ ∧ φ |◊φ | ⟨ p ⟩φ

where p ∈ Prop, p  is a propositional constant, and ⟨ p ⟩ is a modality. Also, we use □ and 

[ p ] for the dual operators of  ◊ and ⟨ p ⟩, respectively.

	 The readings of basic modal formulas are as usual. The constant p  indicates the current 

state is memorized, and ⟨ p ⟩φ expresses that the current state has a successor u s.t. after we 

memorize u, φ is true at u. Given φ, ψ, χ, we use φ[χ/ψ] for the formula obtained by replacing 

all occurrences of χ in φ with ψ.

	 The models for PML are tuples M  = (W, R, V, S), where W ≠ ∅, R ⊆ W × W is a binary 

relation on W, V : Prop → (W) is a valuation function,2 and S ⊆ W is a memory set consisting 

of the states that have been memorized. For each w ∈ W, we define R(w) ≔ {u : ⟨w, u⟩ ∈ R}, 

denoting the set of successors of the state w. The semantics for PML is given by the following:

Definition 2. Let M  = (W, R, V, S) be a model and w ∈ W. The truth of formulas φ ∈ M at w 

in M , written M , w ⊨ φ, is recursively defined in the following manner:

	 M , w ⊨ p	 iff	 w ∈ V(p)	

	 M , w ⊨ p 	 iff	 w ∈ S	

	 M , w ⊨ ¬φ	 iff	 M , w ⊭ φ	

	 M , w ⊨ φ ∧ ψ	 iff	 M , w ⊨ φ and M , w ⊨ ψ	

	 M , w ⊨ ◊φ	 iff	 M , u ⊨ φ for some u ∈ R(w)	

	 M , w ⊨ ⟨ p ⟩φ	 iff	 M |⟨v+ p ⟩, v ⊨ φ for some v ∈ R(w)	

where M |⟨v+ p ⟩≔ (W, R, V, S ∪ {v}).

Example 1. To see how the device works, let us consider a model M  = (W, R, V, ∅), where 

V (p) = ∅ for any p ∈ Prop. The formula ⟨ p ⟩⟨ p ⟩⟨ p ⟩◊◊ p  is true at w in M , since (W, R, V, 

{s, u, v}), u ⊨ ◊◊ p .

2	 For any set A, we use  (A) for its power set.
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	 The notions of satisfiability, validity and logical consequence are defined as the usual. 

PML refers to the validities with respect to the class of models whose memory sets start with 

the empty set, which is in line with the fact that the set of states that have been poisoned in a 

game always begins with ∅. Also, we call the logic defined w.r.t. the class of all models ‘the 

minimal poison modal logic’ abbreviated as MPML. All validities of MPML are valid in PML, 

but validities of the latter need not be valid in the former: for a witness, ¬ p  is a validity of 

PML, but not of MPML.

	 Moreover, the language S for PSL can be obtained by replacing ◊φ in M with a new 

modality ⟨t⟩φ, reading the current state has a successor u s.t. u is not memorized and φ is true 

at u. The truth condition is as follows:

M , w ⊨ ⟨t⟩φ iff  M , v ⊨ φ for some v ∈ R(w) \ S

Moreover, we will use [t] for the dual of ⟨t⟩.

	 Reconsider the model M  defined in Example 1. When we substitute ◊ with ⟨t⟩ in ⟨ p ⟩⟨ p ⟩

⟨ p ⟩◊◊ p , the resulting formula ⟨ p ⟩⟨ p ⟩⟨ p ⟩⟨t⟩⟨t⟩ p  would be false at w in M : by the truth 

condition for ⟨t⟩, formula ⟨t⟩ p  is always false.

	 Again, PSL refers to the validities w.r.t. the class of models whose memory sets begin with 

the empty set, and we use MPSL for the corresponding minimal logic, i.e., the validities w.r.t. 

the class of all models. It is easy to see that PSL and MPSL are fragments of PML and MPML 

respectively, since we can define ⟨t⟩φ as ◊(¬ p  ∧ φ). In terms of the expressiveness on models, 

PSL is strictly weaker than PML, which is also strictly weaker than the standard memory logic 

(Blando et al., 2020).

	 Also, we can show the following with the existing results developed for the two logics:

Proposition 1. Neither PML or PSL can be embedded in fixed-variable fragments of FOL.

Proof. The model-checking problems for both PSL and PML are PSPACE-complete (Blando 

et al., 2020) and the two logics can be embedded into FOL with functions that have a 

polynominal size increase (Blando et al., 2020; Grossi and Rey, 2019b). On the other hand, 

Vardi (1995) showed that the model-checking problem for any fragment of FOL with a fixed 

number of variables is in P. These together show that neither PML nor PSL can be translated 

into fixed-variable fragments of FOL.	 □

	 In what follows, we will also work with the hybrid extension, HPML, of PML. Precisely, 

the language HM  for HPML is given in the following manner:
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
HM ∋ φ ::= i | p | p  | ¬φ | φ ∧ φ | @iφ | ◊φ | ⟨ p ⟩φ

where i ∈ Nom and Nom = {i, j, k, ...} is a set of nominals such that Nom ∩ Prop = ∅.

	 Models M  = (W, R, V, S) for HPML are the same as before, except that the valuations V 

now are functions from Prop ∪ Nom to  (W). As usual, nominals i are interpreted as 

singletons (i.e., {w}). In what follows, if there is no danger of confusion, we use i  to denote 

the node named i. The truth conditions for i and @iφ are as follows:

M , w ⊨ i iff w = i

M , w ⊨ @iφ iff M , i  ⊨ φ

	 As before, we can also obtain a fragment of HPML by replacing ◊φ in HM with ⟨t⟩φ, and 

we write HS for the resulting language and write HPSL for the logic. It can be shown that 

HPSL is still strictly weaker than HPML.3 Also, we use HMPML and HMPSL for the hybrid 

extensions of MPML and MPSL, respectively. It is easy to see that HMPSL is also a fragment 

of HMPML.

	 With our design, we can show a property of locality for HMPML (and HMPSL). For any 

formula φ ∈ HM, we use Prop(φ) for the set of all propositional variables occurring in φ and 

use Nom(φ) for the set of nominals occurring in the formula. Now we can show the following:

Proposition 2. Let φ ∈ HM, M 1 = (W, R, V1, S) and M 2 = (W, R, V2, S) be two models such 

that for any x ∈ Prop(φ) ∪ Nom(φ), V1(x) = V2(x). For any w ∈ W, it holds that

M 1, w ⊨ φ iff M 2, w ⊨ φ.

As a consequence, for all formulas of HS, we also have the same result.

Proof. It goes by induction on formulas. Hybrid formulas can be proved in the usual way, and 

the case for p  is trivial. Thus, we just consider the case that φ ≡ ⟨ p ⟩ψ. Details are as follows:

M 1, w ⊨ ⟨ p ⟩ψ iff  (W, R, V1, S ∪ {v}), v ⊨ ψ for some v ∈ R(w) 

		               iff  (W, R, V2, S ∪ {v}), v ⊨ ψ for some v ∈ R(w) 

3	 To give a precise proof for this, we need the notions of bisimulation for the logics, but we leave the 
details to another occasion. For the notions of bisimulation for PML and PSL, we refer to Blando 
et al. (2020), and for the notion of bisimulation for the hybrid logic, we refer to ten Cate (2005).
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				        iff  M 2, w ⊨⟨ p ⟩ψ

The second equivalence holds by induction hypothesis.	 □

3	 Undecidability for PSL

	 In this section, we aim to study the computational behavior of PSL, and we will prove that 

the satisfiability problem for PSL is undecidable. To achieve our goal, we will show that the 

undecidable  × -tiling problem (Berger, 1966) can be encoded with the satisfiability problem 

for PSL.

	 Let { }1, ..., nt t=  ⊆ Prop be a finite set of tile types. We use right(tk) for the set of tile 

types that can be placed to the right of tile type tk, and top(tk) for the set of tile types that can 

be placed to the top of tile type tk. For a non-empty and finite set T of formulas, 
∨

T ≔ 
∨

φ∈Tφ, 

and oneT ≔ 
∨
ϕ∈T

(φ∧
∧

ψ∈T\{ϕ}
¬ψ), meaning that there is exactly one formula in T that is true.

	 In the construction below, we will make use of the techniques of ‘spy point’ (Blackburn and 

Seligman, 1995) (all states that are reachable from a spy point in n-steps can also be reached 

in one step), and we will use a propositional letter ‘s’ for such states. Moreover, we use 

propositional letters ‘0,’ ‘1,’ and ‘2’ for tiles, and the letters ‘u’ and ‘r’ to denote, respectively, 

upward movements and movements to the right. For any x ∈ {u, r}, we will use ◊xφ for ⟨t⟩

(x ∧ ⟨t⟩φ) and □xφ for its dual. We use Rup and Rright for the relations described by ◊u and ◊r, 

respectively. To be precise,

Rup≔ {⟨w1, w2⟩ : M , w1(2) ⊨ 
∨

{0, 1, 2} and there is a u-state w3 s.t. ⟨w1, w3⟩, ⟨w3, w2⟩ ∈ R} 

Rright≔ {⟨w1, w2⟩ : M , w1(2) ⊨ 
∨

{0, 1, 2} and there is an r-state w3 s.t. ⟨w1, w3⟩, ⟨w3, w2⟩ ∈ R}

Intuitively, ⟨w1, w2⟩ ∈ Rup means tile w2 is above w1, and ⟨w1, w2⟩ ∈ Rright means w2 is to the right 

of w1. Now we define a desired formula φ  that is the conjunction of (T1)–(T19) constructed 

below. For ease of understanding, we will gradually draw the key features of a potential model, 

which are required to make the formula true.

(T1) ¬s ∧ 
∧

i∈{0,1,2,u,r}
¬i ∧ ⟨t⟩s 

This shows that the current state (e.g., w) is not 0, 1, 2, u, r or s, but can reach at least one 

s-state.
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(T2) [t](s ∧ 
∧

i∈{0,1,2,u,r}
¬i ∧ ⟨t⟩0 ∧ [t](one{0, 1, 2, u, r} ∧ ¬s ∧ 

∧
i∈{0,1,2,u,r}

(i → ¬⟨t⟩i))

All successors of w are s-points, and each of these s-states satisfies the following: (a) it is not 

0, 1, 2, u or r; (b) it can reach at least one 0-state; (c) each successor of such an s-point is 

irreflexive and satisfies exactly one of 0, 1, 2, u, r but not s.

(T3) [ p ][t]¬⟨t⟩s ∧ [t][t]⟨t⟩s

By this formula, fixing an s-successor, the successors of the s-state can also see an s-state, 

which is exactly the fixed s-state itself. As we shall see, one of the s-states will serve as a spy 

point.

(T4) [t][t][t](¬s → ⟨t⟩s) ∧ [ p ][t][t](¬s → ¬⟨t⟩s)

By fixing an s-successor, all the ¬s-states accessible from the s-state in two steps can reach the

s-state in one step (but cannot reach other different s-states).

	 In the following, we define the relations Rup and Rright for tiles {0, 1, 2}, which represent 

‘moving up’ and ‘moving to the right’ respectively. For each tile i ∈ {0, 1, 2}, let u(i) = (i + 1) 

mod 3, r(i) = (i + 2) mod 3. Note that we have the following:

{i, u(i), u(u(i))} = {i, r(i), r(r(i))} = {0, 1, 2} and u(r(i)) = r(u(i)) = i.

(T5) 
∧

i∈{0,1,2}
[t][t](i → ◊uu(i)) ∧ 

∧
i∈{0,1,2}

[t][t](i → ◊rr(i))

This means that every i-tile, which is accessible from an s-state in one step, has at least one 

u(i)-tile above it and at least one r(i)-tile to its right. Combining this and (T4), we have the 

following:
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(T6) 
∧

i∈{0,1,2}
[t][ p ](i → [t](¬s → ¬⟨t⟩i)) ∧ 

∧
i∈{0,1,2}

[t][t](i → [t](¬s → ⟨t⟩i))

For any i-tile a accessible from an s-state, the relation from a to its u-successors and r-successors 

is symmetric, and those u-successors and r-successors cannot see other i-tiles except a.

(T7) 
∧

i∈{0,1,2}
[t][t][ p ]((u ∧ ⟨t⟩u(i) ∧ ⟨t⟩i) → [t](¬s → ¬⟨t⟩(u ∧ ⟨t⟩u(i) ∧ ⟨t⟩i))) ∧

	
∧

i∈{0,1,2}
[t][t][t]((u ∧ ⟨t⟩u(i) ∧ ⟨t⟩i) → [t](¬s → ⟨t⟩(u ∧ ⟨t⟩u(i) ∧ ⟨t⟩i))) 

(T8) 
∧

i∈{0,1,2}
[t][t][ p ]((r ∧ ⟨t⟩r(i) ∧ ⟨t⟩i) → [t](¬s → ¬⟨t⟩(r ∧ ⟨t⟩r(i) ∧ ⟨t⟩i))) ∧

	
∧

i∈{0,1,2}
[t][t][t]((r ∧ ⟨t⟩r(i) ∧ ⟨t⟩i) → [t](¬s → ⟨t⟩(r ∧ ⟨t⟩r(i) ∧ ⟨t⟩i))) 

By (T7), given a u-state a that is accessible from an s-state in two steps and can reach both i 

and u(i), any ¬s-state that can be reached from a can see a u-state, which is exactly a itself. 

(T8) is analogous to (T7) and deals with r-states. Now the previous picture becomes the 

following:

(T9)
∧

i∈{0,1,2}
[t][t](i →[t](u→(⟨t⟩u(i)↔ ¬⟨t⟩u(u(i))))) ∧
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∧

i∈{0,1,2}
[t][t](i →[t](r→(⟨t⟩r(i)↔ ¬⟨t⟩r(r(i)))))

The formula puts further restrictions to the links between u-states, r-states, and tiles i. For 

instance, fixing an s-state and an i-tile a that can be reached, for any u-state b ∈ R(a), b can 

reach a u(i)-tile or a u(u(i))-tile, but not both.

(T10)
∧

i∈{0,1,2}
[t][ p ](i → [t](u → [ p ](u(i) → [ p ]((u ∧ ¬⟨t⟩i ∧ ¬⟨t⟩u(i) ∧¬⟨t⟩u(u(i))) 

	 → [t](s → ¬⟨t⟩(u ∧¬⟨t⟩i ∧¬⟨t⟩u(i)∧ ¬⟨t⟩u(u(i)))))))) ∧

	
∧

i∈{0,1,2}
[t][ p ](i → [t](u → [ p ](u(i) → [t]((u ∧ ¬⟨t⟩i ∧ ¬⟨t⟩u(i) ∧ ¬⟨t⟩u(u(i))) 

	 → [t](s → ⟨t⟩(u∧¬⟨t⟩i∧ ¬⟨t⟩u(i) ∧ ¬⟨t⟩u(u(i)))))))) 

(T11)
∧

i∈{0,1,2}
[t][ p ](i → [t](r → [ p ](r(i) → [ p ]((r ∧ ¬⟨t⟩i ∧ ¬⟨t⟩r(i) ∧ ¬⟨t⟩r(r(i))) 

	 → [t](s → ¬⟨t⟩(r ∧¬⟨t⟩i ∧ ¬⟨t⟩r(i) ∧ ¬⟨t⟩r(r(i)))))))) ∧

	
∧

i∈{0,1,2}
[t][ p ](i → [t](r → [ p ](r(i) → [t]((r ∧ ¬⟨t⟩i ∧ ¬⟨t⟩r(i) ∧ ¬⟨t⟩r(r(i))) 

	 → [t](s → ⟨t⟩(r ∧¬⟨t⟩i ∧ ¬⟨t⟩r(i) ∧ ¬⟨t⟩r(r(i)))))))) 

The two formulas are analogous: the former is about u-states and the latter is about r-states. By 

(T10), given an s-state a and an i-tile b ∈ R(a), any u-successor of a can also be reached from 

that s-state a. On the basis of this formula and (T4), we have the following:

(T12)
∧

i∈{0,1,2}
[t][ p ](i → □u(† → □u¬i)) ∧

∧
i∈{0,1,2}

[t][t](i → □u(† → ◊ui)), († ∈ {u(i), u(u(i))})

(T13)
∧

i∈{0,1,2}
[t][ p ](i → □r(† → □r¬i)) ∧

∧
i∈{0,1,2}

[t][t](i → □r(† → ◊ri)), († ∈ {r(i), r(r(i))})

Formulas (T12) and (T13) ensure that Rup, Rright, and their inverse relations are functional.
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(T14)
∧

i∈{0,1,2}
[t][t](i → [t](r → [ p ](r(i) →  [t](r → [t](i → [t](u → [t](u(i)∧◊u(i∧¬◊rr(i))) 

	 → [t](s →⟨t⟩(u(i) ∧ ◊u(i ∧ ¬◊rr(i)))))))))) ∧

	
∧

i∈{0,1,2}
[t][t](i → [t](r → [ p ](r(i) →  [t](r → [t](i → [t](u → [ p ](u(i)∧◊u(i∧¬◊rr(i))) 

	 → [t](s →¬⟨t⟩(u(i) ∧ ◊u(i ∧ ¬◊rr(i)))))))))) 

(T15)
∧

i∈{0,1,2}
[t][t](i → [t](u → [ p ](u(i) → [t](u → [t](i → [t](r → [t](r(i) ∧ ◊r(i ∧ ¬◊uu(i))) 

	 → [t](s → ⟨t⟩(r(i) ∧ ◊r(i ∧ ¬◊uu(i)))))))))) ∧

	
∧

i∈{0,1,2}
[t][t](i → [t](u → [ p ](u(i) → [t](u → [t](i → [t](r → [ p ](r(i) ∧ ◊r(i ∧ ¬◊uu(i))) 

	 → [t](s → ¬⟨t⟩(r(i) ∧ ◊r(i ∧ ¬◊uu(i)))))))))) 

By these two formulas, in the picture, the s-state is seen to reach the 1-state, guaranteed by 

(T14), and can also reach the 2-state, guaranteed by (T15).

(T16)
∧

i∈{0,1,2}
[t][t](u(i) → □u(i → □r(r(i) → ◊u(i ∧ ◊ru(i))))) ∧

	
∧

i∈{0,1,2}
[t][ p ](u(i) → □u(i → □r(r(i) → □u(i →□r ¬u(i))))) 

Formula (T16) guarantees the confluence property. Then, based on (T5), we have the following, 

where we use the undirected links to mean the links with two directions:
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(T17)
∧

i∈{0,1,2}
[t][t](i → one )  

  

(T18)
∧

i∈{0,1,2},1≤k≤n
[t][t](i ∧ tk → □u(u(i) → 

∨
 top(tk)))

(T19)
∧

i∈{0,1,2},1≤k≤n
[t][t](i ∧ tk → □r(r(i) → 

∨
 right(tk)))

Lemma 1. If   tiles  × , then φ  is satisfiable.

Proof. Let ɡ :  ×  →   be a tiling function. We define a model M ɡ = (Wɡ, Rɡ, Vɡ, ∅) as 

follows:

•	 Wɡ = W0 ∪ {w, w*} and W0 = {⟨n, m⟩ ∈  ×  : n × m is even}

•	 Rɡ = Ru ∪ Rr ∪ {⟨w, w*⟩} ∪ ({w*} × W0) ∪ (W0 × {w*}) where

•	Ru = {⟨⟨2k, l⟩, ⟨2k, l + 1⟩⟩ : k, l ∈ } ∪ {⟨⟨2k, l + 1⟩, ⟨2k, l⟩⟩ : k, l ∈ }

•	Rr = {⟨⟨k, 2l⟩, ⟨k + 1, 2l⟩⟩ : k, l ∈ } ∪ {⟨⟨k + 1, 2l⟩, ⟨k, 2l⟩⟩ : k, l ∈ }

•	 Vɡ is defined as

•	Vɡ(s) = {w*}

•	Vɡ(u) = {⟨2k, 2l + 1⟩ : k, l ∈ }

•	Vɡ(r) = {⟨2k + 1, 2l⟩ : k, l ∈ }

•	Vɡ(0) = {⟨6k, 6l⟩ : k, l ∈ } ∪ {⟨6k + 2, 6l + 2⟩ : k, l ∈ } ∪ {⟨6k + 4, 6l + 4⟩ : k, l ∈ }

•	Vɡ(1) = {⟨6k, 6l + 2⟩ : k, l ∈ } ∪ {⟨6k + 2, 6l + 4⟩ : k, l ∈ } ∪ {⟨6k + 4, 6l⟩ : k, l ∈ }

•	Vɡ(2) = {⟨6k, 6l + 4⟩ : k, l ∈ } ∪ {⟨6k + 2, 6l⟩ : k, l ∈ } ∪ {⟨6k + 4, 6l + 2⟩ : k, l ∈ }

•	Vɡ(tk) = {⟨2k, 2l⟩ : k, l ∈ , g(k, l) = tk} for each 1 ≤ k ≤ n

•	Vɡ(p) = ∅ for each p ∈ Prop \ ( ∪ {s, u, r, 0, 1, 2})

For an illustration of a piece of information about the model, consider the final picture directed 

for our formulas constructed: the s-state is w*, the 0-point in the lower left is ⟨0, 0⟩, the u-point 

above ⟨0, 0⟩ is ⟨0, 1⟩, the r-state to the left of the center 0-point is ⟨1, 2⟩, and so on. 

Now, M ɡ, w ⊨ φ .								           □

Lemma 2. If φ  is satisfiable, then   tiles  × .

Proof. Let M  = (W, R, V, ∅) be a model and w ∈ W such that M , w ⊨ φ . We define a tiling 

function g :  ×  →  . In what follows, for any φ, we use ϕ� �  ⊆ W for the set of states 

where φ is true.

	 By (T2) and (T17), we have �
∨

T � ≠ ∅. Then by (T5) and (T12), for each w1 ∈ �
∨

T �, 

there is a state w2 ∈ �
∨

T � s.t. w1RwuRw2 where wu ∈ V (u), w1 ∈ V(i) and w2 ∈ V(u(i)) for some 
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i ∈ {0, 1, 2}, and we denote w2 as up(w1) and note that up : �
∨

T � → �
∨

T � is a function. 

Similarly, by (T5) and (T13), for each w1 ∈ �
∨

T �, there is a w2 ∈ �
∨

T � s.t. w1RwrRw2 

where wr ∈ V(r), w1 ∈ V(i) and w2 ∈ V(r(i)) for some i ∈ {0, 1, 2}, and we denote w2 as right(w1) 

and note that right : �
∨

T � → �
∨

T � is a function. Let w0 ∈ �
∨

T �. We define ɡ1 :  ×  

→ �
∨

T � as follows:

 

•	 ɡ1(⟨0, 0⟩) =  w0

•	 ɡ1(⟨n, m + 1⟩) = up(ɡ1(⟨n, m⟩))

•	 ɡ1(⟨n + 1, m⟩) = right(ɡ1(⟨n, m⟩)) for m, n ∈ .

By (T16), we have

ɡ1(⟨n + 1, m + 1⟩) = up(right(ɡ1(⟨n, m⟩))) = right(up(ɡ1(⟨n, m⟩))).

Thus ɡ1 is well defined. Then we define ɡ2 : �
∨

T � →   as follows.

For each 1 ≤ k ≤ n, ɡ2(v) = tk iff v ∈ V (tk).

Let ɡ = ɡ2 ◦ ɡ1. Then by (T17)–(T19), ɡ is a tiling function.				       □

Theorem 1. PSL is undecidable.

Proof. It follows from Lemmas 1 and 2 directly.	 □

	 In the undecidability proof, the modality ⟨ p ⟩φ is crucial in defining the tiling problem, and 

dropping it from the language would lead us to a decidable fragment,4 but the fragment 

obtained by removing the constant p  from PSL is still undecidable; the constant is not used in 

the construction at all. However, in contrast, both the fragments of PML (and MPML) without 

p  and without ⟨ p ⟩ are decidable; the former fragment is just the usual polymodal logic with 

two modalities (for the same relation) and the latter is exactly the basic modal logic (again, the 

constant p  in such a setting can still be treated as an ordinary propositional atom).

4	 Recall that models for PSL have ∅ as their initial memory sets, and so lacking the tool ⟨ p ⟩φ that 

can extend memory sets makes p  is always false, which then indicates that ⟨t⟩φ behaves in the 

same way as the modality ◊φ. More generally, w.r.t. an arbitrary model of MPSL whose memory 

set might not be empty, ⟨t⟩φ can still be defined as ◊(¬ p  ∧ φ) of the basic modal language, in 

which p  is treated as an ordinary propositional atom.
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4	 Axiomatization

	 Although the complexity of the logics is high, this part will show that there are still 

complete Hilbert-style proof systems for HPML and HPSL. For this, we will first show desired 

calculi for the minimal proposals HMPML and HMPSL. Our techniques are motivated by 

Areces et al. (2012) in which complete proof systems were developed for several hybrid 

extensions of the standard memory logic, but many modifications are needed to fit with the 

new designs. As we shall see, in line with the fact that HMPSL is a fragment of HMPML, the 

calculus for the former provided in this section is also a ‘fragment’ of the calculus for the 

latter.5 Moreover, both the proof systems enjoy the strong completeness properties.

4.1	 Calculus for HMPML

	 We start by considering HMPML. A desired calculus HMPML for the logic is given in 

Table 1. It extends axioms and rules for the hybrid logic with axioms and rules for [ p ] (II) and 

the interaction axioms between [ p ] and □ (III). Derivations in HMPML are defined as usual. 

For each formula φ, we write ⊢HMPML φ if there is a derivation of φ in HMPML. When there is 

no confusion, we also write ⊢φ for simplicity.

	 The rule (Paste⟨ p ⟩) is an analogy of (Paste◊), but we need to take care of the augment of 

the memory set. Formula (Memory) means that if (a) i can reach j and (b) j is φ after we add 

j to the memory set, then i has a successor u such that after adding u to the memory set, φ is 

true at u. Moreover, (Com⟨ p ⟩◊) states if (a) i can reach j after we add j to the memory set and 

(b) j is φ (before the enlargement of the memory set), then i can reach j in the initial model. 

Finally, (Com◊⟨ p ⟩) intuitively means that the enlargement of the memory set does not affect 

the accessibility relation.

	 In the proof system, the form φ[ p / p  ∨ j] is involved, which is intended to capture the case 

of extending the memory set with j. Note that (⟨ p ⟩φ)[ p / p  ∨ j] is ⟨ p ⟩(φ[ p / p  ∨ j]). This can 

be made precise as follows:

Lemma 3. Let M  = (W, R, V, S) be a model and w ∈ W such that V(i) = w. Then for any v ∈ W 

and any φ, the following holds:

5	 We believe that the calculus for HMPML is also a ‘fragment’ of the calculus for the standard 
memory logic in the work of Areces et al. (2012), but we will not show this to keep this article 
compact.



57

Modal Logics for the Poison Game: Axiomatization and Undecidability

(W, R, V, S ∪ {w}), v ⊨ φ iff (W, R, V, S), v ⊨ φ[ p / p  ∨ i]

Proof. We prove this lemma by induction on φ. The cases for x ∈ Prop ∪ Nom and Boolean 

connectives ¬, ∧ are easy, and we show the proof for other cases.

(1)	φ ≡ p . Then, φ[ p / p  ∨ i] ≡ p  ∨ i. For the direction from left to right, we assume that (W, 

R, V, S ∪ {w}), v ⊨ p . Then, it holds immediately by the semantics that v ∈ S ∪ {w}. If v = 

w, then M , v ⊨ i and so M , v ⊨ p  ∨ i; if v ≠ w, then M , v ⊨ p . Thus, we always have 

M , v ⊨ p  ∨ i.

	 For the direction from right to left, suppose that (W, R, V, S), v ⊨ p  ∨ i. Then, there are 

also two different cases. Firstly, if (W, R, V, S), v ⊨ p , then v ∈ S and so (W, R, V, S ∪ {w}), 

v ⊨ p . Secondly, if (W, R, V, S), v ⊨ i, then v = w and so (W, R, V, S ∪ {w}), v ⊨ p .

Table 1. A proof system HMPML for HMPML.
I: Axioms and rules for hybrid logic
(Tau) Propositional tautologies
(K□) □(φ → ψ) → (□φ → □ψ)
(K@) @i(φ → ψ) → (@iφ → @iψ)
(Dual□) ◊φ ↔ ¬□¬φ
(SelfDual) ¬@iφ ↔ @i¬φ, where i ∈ Nom.
(Ref) @ii, where i ∈ Nom.
(Intro) i ∧ φ → @iφ, where i ∈ Nom.
(Back□) @iφ → □@iφ, where i ∈ Nom.
(Agree) @j@iφ → @iφ, where i, j ∈ Nom.
(MP) From φ → ψ and φ, infer ψ.
(Nec□) From φ, infer □φ.
(Nec@) From φ, infer @iφ, where i ∈ Nom.
(Name) From i → φ, infer φ, where i ∈ Nom is new to φ.
(Paste◊) From @i◊j ∧ @jφ → ψ, infer @i◊φ → ψ, where j is new to φ, ψ, i.

II: Axioms and rules for [p]

(K[p]) [p](φ → ψ) → ([p]φ → [p]ψ)
(Dual[p]) ⟨p⟩φ ↔ ¬[p]¬φ
(Memory) @i⟨ p ⟩j ∧ @jφ[ p / p  ∨ j] → @i⟨p⟩φ
(Paste⟨p⟩) From @i⟨ p ⟩j ∧ @jφ[ p / p  ∨ j] → ψ, infer @i⟨p⟩φ → ψ, where j is new to φ, 

ψ, i.
III: Interaction axioms
(Com⟨p⟩◊) @i⟨p⟩j ∧ @jφ → @i◊φ
(Com◊⟨p⟩) @i◊j → @i⟨p⟩j
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(2)	φ ≡ @jψ. Then, it follows that

(W, R, V, S ∪ {w}), v ⊨ @jψ iff (W, R, V, S ∪ {w}), j  ⊨ ψ

						        iff (W, R, V, S), j  ⊨ ψ[ p / p  ∨ i]

						        iff (W, R, V, S), v ⊨ @jψ[ p / p  ∨ i]

The second equivalence holds by the induction hypothesis.

 

(3) φ ≡ ◊ψ. The following sequence of equivalences holds:

(W, R, V, S ∪ {w}), v ⊨ ◊ψ iff (W, R, V, S ∪ {w}), u ⊨ ψ for some u ∈ R(v)

					       iff (W, R, V, S), u ⊨ ψ[ p / p  ∨ i]

					       iff (W, R, V, S), v ⊨ ◊ψ[ p / p  ∨ i]

The second equivalence holds by the induction hypothesis.

(4) φ ≡ ⟨ p ⟩ψ. Then we have the following:

(W, R, V, S ∪ {w}), v ⊨⟨ p ⟩ψ iff (W, R, V, S ∪ {w} ∪ {u}), u ⊨ ψ for some u ∈ R(v)

				                iff (W, R, V, S ∪ {u}), u ⊨ ψ[ p / p  ∨ i]

				                iff (W, R, V, S), v ⊨ ⟨ p ⟩ψ[ p / p  ∨ i].

The second one holds by the induction hypothesis. This completes the proof.	 □

Theorem 2. For all formulas φ, ⊢HMPML φ implies that φ is a validity of HMPML.

Proof. We merely consider the axiom (Memory) and the rule (Paste⟨ p ⟩), as other cases are 

easy to show or similar to the cases of hybrid logic. Let M  = (W, R, V, S) be a model and 

w ∈ W.

(1)	We first show the validity of (Memory). Suppose that M , w ⊨ @i⟨ p ⟩j ∧ @jφ[ p / p  ∨ j]. 

Then, j  ∈ R( i ) and  M , j  ⊨ φ[ p / p  ∨ j]. By Lemma 3, (W, R, V, S ∪ { j }), j  ⊨ φ. 

Hence, M , i  ⊨ ⟨ p ⟩φ. Therefore,  M , w ⊨ @i⟨ p ⟩φ.

(2)	We now move to the case for (Paste⟨ p ⟩). Suppose for reductio that M , w ⊨ @i⟨ p ⟩φ and 

M , w ⊭ ψ. Hence, M , i  ⊨ ⟨ p ⟩φ and so there exists v ∈ R( i ) s.t. (W, R, V, S ∪ {v}), v ⊨ φ. 

Let M* = (W, R, V*, S), where

V x
V x x
v x j

j*( )
( ), ( );

}, .
�

� �
�

�
�
�

� �if \

{

Prop Nom

Since j is new to φ, ψ and i, by Proposition 2, (W, R, V*, S ∪ {v}), v ⊨ φ and M*, w ⊭ ψ. By 

Lemma 3, M*, v ⊨ φ[ p / p  ∨ j], which then gives us M*, w ⊨ @jφ[ p / p  ∨ j]. Note that j  
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∈ R( i ). Then, it holds that M*, w ⊨ @i⟨ p ⟩j. Hence, M*, w ⊨ @i⟨ p ⟩j ∧ @jφ[ p / p  ∨ j] 

and M*, w ⊭ ψ. Therefore, (@i⟨ p ⟩j ∧ @jφ[ p / p  ∨ j]) → ψ is not a validity of HMPML.  □

4.2	 Completeness for HMPML

	 Now we are going to show the completeness of the calculus HMPML. To do so, let us first 

introduce the following auxiliary notions.

 

Definition 3. Let Γ ⊆ HM be a set of formulas.

•	 Γ is HMPML-consistent (or consistent, if the proof system is clear from the context) if 

⊬HMPML φ1 ∧ ··· ∧ φn → ⊥ for any (φi)1≤i≤n ⊆ Γ, and it is HMPML-inconsistent (or 

inconsistent, if the proof system is clear from the context) if it is not consistent.

•	 Γ is maximal HMPML-consistent if Γ is consistent and ∆ is inconsistent for any Γ ⊊ ∆ ⊆ .

•	 Γ is named if i ∈ Γ for some nominal i ∈ Nom.

•	 Γ is pasted if for each @i◊φ ∈ Γ, there is some nominal j such that @i◊j ∧ @jφ ∈ Γ.

•	 Γ is p -pasted if for each @i⟨ p ⟩φ ∈ Γ, there is some nominal j such that @i⟨ p ⟩j∧@jφ[ p /
p  ∨j] ∈ Γ.

A set Γ is called an maximal HMPML-consistent set (HMPML-MCS) if it is maximal 

HMPML-consistent. Let Nom′ be a countable set of nominals disjoint from both Nom and 

Prop. Let Nom+ = Nom ∪ Nom′ and let HM
+  be the same as HM except that the nominals 

of HM
+  are those of Nom+.

Lemma 4. Any HMPML-consistent set of the language HM can be extended to a named, 

pasted and p -pasted HMPML-MCS of the language HM
+ .

Proof. Let Γ be an HMPML-consistent set, j0 ∈ Nom′ and Γ0 ≔ Γ ∪ {j0}. With the rule 

(Name), one can check that Γ0 is consistent. Let (φn)n∈ be an enumeration of all formulas of 

HM
+ . Then for each k ∈ , we define the set Γk+1 as follows.

•	 If Γk ∪ {φk} is not consistent, then Γk+1 ≔ Γk.

•	 If Γk ∪ {φk} is consistent, then

•	Γk+1 = Γk ∪ {φk} ∪ {@i◊j ∧ @jψ} if φk is of the form @i◊ψ,

where j ∈ Nom+ is the first new nominal with respect to Γk and φk.

•	Γk+1 = Γk ∪ {φk} ∪ {@i⟨ p ⟩j ∧ @jψ[ p / p  ∨ j]} if φk is of the form @i⟨ p ⟩ψ, 

where j ∈ Nom+ is the first new nominal with respect to Γk and φk.
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•	Γk+1 = Γk ∪ {φk} if φk is not of the form @i◊ψ or @i⟨ p ⟩ψ.

Let Γ* = ∪n∈NΓn. By the rules (Paste◊) and (Paste⟨ p ⟩), Γk is consistent for all k ∈ . The set 

Γ* is an HMPML-MCS that extends Γ. Moreover, by the construction, Γ* is named, pasted 

and p -pasted, as needed.	 □

	 Here are a few facts from hybrid logic.

Proposition 3 Let Γ be an HMPML-MCS of HM
+ . For each i ∈ Nom+, let ∆i ≔ {φ : @iφ ∈ Γ}. 

(1)	For all i ∈ Nom+, ∆i is an HMPML-MCS and i ∈ ∆i.

(2)	Γ =∆i whenever i ∈ Γ.

(3)	For all i, j ∈ Nom+, i ∈ ∆j implies ∆i = ∆j.

Proof. These are standard results for the hybrid logic (Blackburn et al., 2001, p. 439, Lemma 

7.24).	 □

	 Now we are going to show the strong completeness of HMPML. By Lemma 4, any 

HMPML-consistent set ∆ can be extended to a named, pasted and p -pasted HMPML-MCS 

Γ ⊆ HM
+ . So, to achieve the goal, it suffices to show that Γ is satisfiable.

Definition 4. Let Γ ⊆ HM
+  be an HMPML-MCS that is named, pasted and p -pasted. The 

canonical model induced by Γ is the tuple MΓ = <WΓ, RΓ, VΓ, SΓ>, where

•	 WΓ ≔ {∆i : i ∈ Nom+},

•	 RΓ∆i∆j iff @i⟨ p ⟩j ∈ Γ,

•	 VΓ(x) ≔ {∆i ∈ WΓ : x ∈ ∆i}, for all x ∈ Prop ∪ Nom+, and

•	 SΓ ≔ {∆i ∈ WΓ : p  ∈ ∆i}.

	 Since Γ is named, there is a nominal j ∈ Γ. From item (2) of Proposition 3 it follows that Γ 

=∆j, which indicates that Γ ∈ WΓ. Now, a key step towards the proof of completeness is to show 

a truth lemma, for which we define the following.

Definition 5. We define the complexity of HM-formulas as

C(φ) = 4 × (| p | + 1) × (|⟨ p ⟩| + 1) + |¬| + |◊| + |@| + |∧|

where | ◦ | for ◦ ∈ { p , ⟨ p ⟩, ¬, ◊, @, ∧} is the number of occurrences of ◦ in φ.
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	 It is important to emphasis that | p | does not include the number of occurrences of p  in the 

operator ⟨ p ⟩. The above notion can ensure that C(⟨ p ⟩φ) > C(φ[ p / p  ∨ i]).6 Now we proceed 

to show the following Truth Lemma.

Lemma 5. Let φ ∈ HM
+  and ∆i ∈ WΓ. Then

M Γ, ∆i ⊨ φ iff φ ∈ ∆i.

Proof. We prove this lemma by induction on C(φ). The cases for Prop ∪ { p } ∪ Nom+ and 

Boolean connectives are trivial. Also, the case for φ ≡ @jψ holds by the same reason as that of 

the hybrid logic. We now just consider other cases.

(1)	φ ≡ ◊ψ. For the direction from left to right, assume that MΓ, ∆i ⊨ ◊ψ. Then, there is a set 

∆j ∈ RΓ (∆i) s.t. MΓ, ∆j ⊨ ψ. By induction hypothesis, we have ψ ∈ ∆j and so @jψ ∈ Γ. 

Moreover, by Definition 4, @i⟨ p ⟩j ∈ Γ. Therefore, @i⟨ p ⟩j ∧@jψ ∈ Γ. Then, it follows from 

the axiom (Com⟨ p ⟩◊) and the rule (MP) that @i◊ψ ∈ Γ. Thus, ◊ψ ∈∆i.

	 For the direction from right to left, we suppose that ◊ψ ∈ ∆i. Immediately, @i◊ψ ∈ Γ. Since 

Γ is pasted, there exists a nominal j ∈ Nom+ s.t. @i◊j ∧ @jψ ∈ Γ. Then by (Com◊⟨ p ⟩) and 

(MP), it holds that @i⟨ p ⟩j ∈ Γ. Then ∆j ∈ RΓ(∆i). Note that φ ∈ ∆j. By induction hypothesis, 
MΓ, ∆j ⊨ ψ. Hence, MΓ, ∆i ⊨ ◊ψ.

(2)	φ ≡ ⟨ p ⟩ψ. For the direction from left to right, we assume that MΓ, ∆i ⊨ ⟨ p ⟩ψ. Then, there 

exists ∆j ∈ RΓ (∆i) s.t. (WΓ, RΓ, VΓ, SΓ ∪ {∆j}), ∆j ⊨ ψ. Now, using Lemma 3, we know that (WΓ, 

RΓ, VΓ, SΓ), ∆j ⊨ ψ[ p / p  ∨ j]. Note that C(⟨ p ⟩ψ) > C(ψ[ p / p  ∨ j]). Then, by induction 

hypothesis, it holds that ψ[ p / p  ∨ j] ∈ ∆j. Thus, @i⟨ p ⟩j ∧@jψ[ p / p  ∨ j] ∈ Γ. By the axiom 

(Paste⟨ p ⟩), it holds that @i⟨ p ⟩ψ ∈ Γ, which then gives us ⟨ p ⟩ψ ∈ ∆i, as desired.

	 For the direction from right to left, suppose that ⟨ p ⟩ψ ∈ ∆i. Then, @i⟨ p ⟩ψ ∈ Γ. Since Γ is 

p -pasted, there is a nominal j ∈ Nom+ s.t. @i⟨ p ⟩j ∧ @jψ[ p / p  ∨ j] ∈ Γ. Then, ∆j ∈ RΓ (∆i) 

and ψ[ p / p  ∨ j] ∈ ∆j. By induction hypothesis, (WΓ, RΓ, VΓ, SΓ), ∆j ⊨ ψ[ p / p  ∨ j]. Then by 

Lemma 3, (WΓ, RΓ, VΓ, SΓ ∪ {∆j}), ∆j ⊨ ψ. Thus, MΓ, ∆i ⊨ ⟨ p ⟩ψ. This completes the proof.□

	 We now have enough background to show the following:

6	 Note that p  ∨ i ≔ ¬(¬ p  ∧ ¬i), and so C(φ[ p / p  ∨ i]) = C(φ) + 4 × | p |. Also, we assume that 

⟨ p ⟩ occurs n times in φ; we have C(⟨ p ⟩φ) = 4 × (| p | + 1) × ((n + 1) + 1) + |¬| + |◊| + |@| + |∧| = 

C(φ) + 4 × (| p | + 1). Therefore, C(⟨ p ⟩φ) > C(φ[ p / p  ∨ i]).
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Theorem 4. HMPML is strongly complete for the class of all frames, i.e., every HMPML- 

consistent set is satisfiable w.r.t. the class of all frames.

Proof. Given an HMPML-consistent set ∆, Lemma 4 shows that we can extend it to a named,

pasted and p -pasted HMPML-MCS Γ ⊆ HM
+ . By Lemma 5, it holds that MΓ, Γ ⊨ Γ. Now, 

we define a new model M  = (WΓ, RΓ, V, SΓ), where V = VΓ ↾(Prop ∪ Nom) is obtained by 

restricting VΓ to Prop ∪ Nom. By Proposition 2, M , Γ ⊨ ∆. Thus, ∆ is satisfiable.	 □

	 Now, let HPML be the proof system obtained by extending HMPML with a new axiom 

¬ p . We have the following result.

 

Theorem 5. HPML is a sound and strongly complete calculus for HPML.

Proof. The soundness is easy to see. The proof of completeness is the same as that for HMPML, 

and it is crucial to note that with the formula ¬ p  as an axiom, the set SΓ of the canonical model

(Definition 4) is ∅.	 □

4.3	 A calculus for HMPSL

	 As stated, HMPSL is a fragment of HMPML. In line with this, we will show that by using 

some provable formulas and derivable rules of HMPML, we can obtained a desired calculus, 

written HMPSL, for HMPSL. In this part, we present the details of HMPSL, and the next part 

will show a completeness result for the proof system.

	 Before introducing HMPSL, let us first note that some axioms and rules of HMPML are 

involved with formulas of the form φ[ p / p  ∨ j], e.g., (Memory) and (Paste
p
), and as stated, 

it is intended to capture the situation that a new state is added to the memory set. To axiomatize 

HMPSL, we also need a similar manipulation, but the situation for the new logic is more 

intricate, because of the fact that the meaning of ⟨t⟩ is richer than ◊. Let us now introduce the 

following syntactic translation for HS that aims to handle the situation of memory expansion.

Definition 6. Given a nominal i ∈ Nom, the translation ( )*⋅ i : HS → HS recursively as 

follows:

( )*p i  ≔ p	 ( )*j i ≔ j 	 ( )*p i ≔ p∨ i	 ( )*�� i  ≔ ¬ ( )*ϕ i 	 ( )*� �� i  ≔ ( )*ϕ i  ∧ ( )*ψ i 	

(@ )*
j iϕ  ≔ @j ( )*ϕ i 	 (⟨ p ⟩φ)( )*t iϕ  ≔ ⟨ p ⟩ ( )*ϕ i 	 (⟨t⟩φ)( )*t iϕ  ≔ ⟨t⟩(¬i ∧ ( )*ϕ i )
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For instance, (⟨t⟩⟨t⟩ p )( )*t t jp  is ⟨t⟩(¬j ∧ ⟨t⟩(¬j ∧ ( p  ∨ j))). W.r.t. the translation, the following 

holds:

Lemma 6. Let M  = (W, R, V, S) be a model and w ∈ W such that V(i) = w. Then for each v ∈ W, 

(W, R, V, S ∪ {w}), v ⊨ φ iff (W, R, V, S), v ⊨ ( )*ϕ i

Proof. We show this by induction on φ. We merely prove for the case that φ ≡ ⟨t⟩ψ, as all other 

cases are similar to those in the proof for Lemma 3.

	 Suppose (W, R, V, S ∪ {w}), v ⊨ ⟨t⟩ψ. Then there exists u ∈ R(v) such that u ∉ S ∪ {w} 

and (W, R, V, S ∪ {w}), u ⊨ ψ. By induction hypothesis, M, u ⊨ ( )*ψ i . Since V (i) = w and u 

∉ S ∪ {w}, it holds that M, u ⊭ i. Therefore, we have M, v ⊨ ⟨t⟩(¬i ∧ ( )*ψ i ), i.e.,M, v ⊨ 

(⟨t⟩y)( )*t y i .

	 For the converse direction, assume that M , v ⊨ (⟨t⟩y)( )*t y i , i.e., M , v ⊨ ⟨t⟩(¬i ∧ ( )*ψ i ). 

Then, there exists u ∈ R(v) s.t. u ∉ S and (W, R, V, S), u ⊨ ¬i ∧ ( )*ψ i . So, u ≠ w, which entails 

u ∉ S ∪ {w}. By induction hypothesis, (W, R, V, S ∪ {w}), u ⊨ ψ. Hence, (W, R, V, S ∪ {w}), 

v ⊨ ⟨t⟩ψ.	 □

	 As an application of Lemmas 3 and 6, we have the following:

Corollary 1. For any φ ∈ HM, @jφ[ p / p  ∨ j]↔ @j
( )*ϕ j  is valid. Then, by the completeness of 

HMPML, it holds that ⊢HMPML @jφ[ p / p  ∨ j]↔ @j
( )*ϕ j .

Note that the equivalence holds with the understanding that ⟨t⟩φ is just an abbreviation of 

formula ◊(φ ∧ ¬ p ), but it does not mean that the functions ( )*⋅ i  are redundant; the functions 

are defined for the case that ⟨t⟩φ is a primitive modality of HPSL that does not include the 

operator ◊φ.

Proposition 4 In HMPML, the axioms in Table 2 are provable and the rules in the table are 

derivable.

Proof. We state briefly the key reasons how we obtained the results, but skip the details to save 

space.

	 The cases for (K[t]), (Dual[t]), (Back[t]) and (Nec[t]) can be proved with the reasoning of 

propositional logic (as well as the definition of ⟨t⟩φ).

	 The formula (Com⟨ p ⟩⟨t⟩) can be proved directly with (Com⟨ p ⟩◊) and the definition of ⟨t⟩

φ. For the formula (Com⟨t⟩⟨ p ⟩), one just needs to note that @i⟨t⟩j → @i◊j is provable.
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	 For the rule (Paste⟨t⟩), one can prove it easily with the rule (Paste◊) and the fact that the 

formula @i◊j ∧ @j(φ ∧ ¬ p ) → @i⟨t⟩j ∧ @j(φ ∧ ¬ p ) is provable in HMPML.

	 Finally, for (Memory+) and (Paste p
+ ), we can show them using the formula @jφ[ p /

p∨j]↔ @j
( )*ϕ j  in Corollary 1 together with (Memory) and (Paste⟨ p ⟩), respectively.	    □

 	 Now, we can show the details of HMPSL, which is obtained by modifying HMPML in 

Table 1 in the following manner:

(i)	 Remove the axioms and rules involving ◊, i.e., (K□), (Dual□), (Back□), (Nec□), (Paste◊), 

(Com⟨ p ⟩◊) and (Com◊⟨ p ⟩).

(ii)	Remove (Memory) and (Paste⟨ p ⟩).

(iii) Add the axioms and rules in Table 2.

	 It is simple to check that the resulting calculus HMPSL is sound.

Theorem 7. For all formula φ ∈ HS, ⊢HMPSL φ implies that φ is a validity of HMPSL.

4.4	 Completeness for HMPSL

	 We now turn to showing the strong completeness for HMPSL, and the strategy is similar 

to that for HMPML. Below are some preliminary notions.

Definition 7. Let Γ ⊆ HS be a set of formulas.

•	 Γ is ⟨t⟩-pasted, if for each @i⟨t⟩φ ∈ Γ, there is some nominal j such that @i⟨t⟩j∧@j(φ ∧ 
¬ p ) ∈ Γ).

Table 2. Axioms and rules for ⟨t⟩φ.
(K[t]) [t](φ → ψ) → ([t]φ → [t]ψ)
(Dual[t]) ⟨t⟩φ ↔ ¬[t]¬φ
(Back[t]) @iφ → [t]@iφ, where i ∈ Nom.
(Memory+) @i⟨ p ⟩j ∧ @j

ϕ j
*  → @i⟨ p ⟩φ

(Com⟨ p ⟩⟨t⟩) @i⟨ p ⟩j ∧ @j (φ ∧ ¬ p ) → @i⟨t⟩φ

(Com⟨t⟩⟨ p ⟩) @i⟨t⟩j → @i⟨ p ⟩j 
(Nec[t]) From φ, infer [t]φ.

(Paste⟨t⟩) From @i⟨t⟩j ∧ @j(φ ∧ ¬ p ) → ψ, infer @i⟨t⟩φ → ψ, where j is new to φ, ψ, i.

(Paste p

+
) From @i⟨ p ⟩j ∧ @j

ϕ j
*  → ψ, infer @i⟨ p ⟩φ → ψ, where j is new to φ, ψ, i.
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•	 Γ is p +-pasted, if for each @i⟨ p ⟩φ ∈ Γ, there is some nominal j such that @i⟨ p ⟩j ∧ @j
( )*ϕ j   

∈ Γ.

	 Moreover, the notions of HMPSL-consistency, HMPSL-inconsistency and maximal 

HMPSL-consistent set (HMPSL-MCS) are defined in a similar way to those for HMPML. 

Also, similar to the case of HM
+ , we can also extend the language HS with new nominals 

Nom′, and we still write Nom+ for Nom ∪ Nom′ and HS
+  for the resulting language. Now, 

we have the following Lindenbaum-style lemma.

Lemma 7. Any HMPSL-consistent set of HS can be extended to a named, ⟨t⟩-pasted and p+- 

pasted HMPSL-MCS of HS
+ .

	 Note that Proposition 3 also holds for HMPSL-MCSs. The definition for induced canonical 

models is the same as Definition 4, except that the HMPSL-MCSs Γ are assumed to be named, 

⟨t⟩-pasted and p+-pasted. However, for simplicity, when we mention the induced canonical 

models for HPSL, we will still refer to Definition 4. Let us introduce a new definition for the 

complexity of HS-formulas.

Definition 8. The complexity of HS-formulas is defined as

C(φ) = 4 × (| p | + 1) × (|⟨ p ⟩| + 1) × (|⟨t⟩| + 1) + |¬| + |@| + | ∧ |

 

where |◦| for ◦ ∈ { p , ⟨ p ⟩, ⟨t⟩, ¬, @, ∧} is the number of occurrences of ◦ in φ.

	 The notion ensures that c(⟨ p ⟩φ) > c( ( )*ϕ i ).7 Now we can show the following Truth Lemma.

Lemma 8. Let φ ∈ HS
+  and ∆i ∈ WΓ. Then

MΓ, ∆i ⊨ φ iff φ ∈ ∆i.

Proof. The proof proceeds by induction on c(φ). We merely consider the case that φ ≡ ⟨t⟩ψ, and 

the other cases are similar to the proof for Lemma 5.

	 First, we assume that MΓ, ∆i ⊨ ⟨t⟩ψ. Then there exists ∆j ∈ RΓ (∆i) s.t. ∆j ∉ SΓ and MΓ, ∆j 

⊨ ψ. By induction hypothesis, ψ ∈ ∆j. Note that MΓ, ∆j ⊨ ¬ p , so we have ¬ p  ∈ ∆j (this holds 

in the case for φ ≡ p , which is omitted here). Then, ψ ∧ ¬ p  ∈ ∆j and so @j(ψ ∧ ¬ p ) ∈ Γ. 

7	 One can check that c( ( )*ϕ i ) = c(φ) + 4 ×| p |+ 2 ×|⟨t⟩| (using again the facts that p∨ i is the 

abbreviation of ¬(¬ p  ∧¬i)) and c(⟨ p ⟩φ) = c(φ) + 4 ×(| p | + 1) ×(|⟨t⟩| + 1) = c(φ) + 4 ×| p | 

×|⟨t⟩| + 4 ×| p | + 4 ×|⟨t⟩| + 4.
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Also, by Definition 4, @i⟨ p ⟩j ∈ Γ. Thus @i⟨ p ⟩j ∧ @j(ψ ∧ ¬ p ) ∈ Γ. Then by axiom 

(Com⟨ p ⟩⟨t⟩) and (MP), we have @i⟨t⟩ψ ∈ Γ, i.e., φ ∈ ∆i.

	 Next, suppose ⟨t⟩ψ ∈ ∆i. Then @i⟨t⟩ψ ∈ Γ. Since Γ used to induce the canonical model is 

assumed to be ⟨t⟩-pasted, there exists a nominal j s.t. @i⟨t⟩j ∧ @j(ψ ∧ ¬ p ) ∈ Γ. It follows 

from @i⟨t⟩j and the axiom (Com⟨t⟩⟨ p ⟩) that @i⟨ p ⟩j ∈ Γ. Then ∆j ∈ RΓ (∆i). Also, from @j(ψ 

∧ ¬ p ) ∈ Γ we know that ψ ∈ ∆j and ¬ p  ∈ ∆j. Because of the latter, it holds that ∆j ∉ SΓ, and 

by induction hypothesis, the former gives us MΓ, ∆j ⊨ ψ. Thus, MΓ, ∆i ⊨ φ.		     □

	 Then by Lemma 8, we immediately have the following:

Theorem 8. HMPSL is strongly complete for the class of frames.

	 Finally, similar to the case of HMPSL, we write HMPSL for the proof system obtained by 

adding ¬ p  as an axiom to HPSL, and the following indicates that it is a desired calculus for 

HPSL.

Theorem 9. HPSL is a sound and strongly complete calculus for HPSL.

5	 Conclusion

	 In this article, we studied two logics for the poison game, PML and PSL, which are 

designed on the basis of the memory logic but are strictly weaker than the latter. As indicated 

in the work of Blando et al. (2020), PSL is strictly weaker than PML and the latter has an 

undecidable satisfiability problem. In this work, we offered the same answer to the satisfiability 

problem for PSL. Also, based on the complexity of the model-checking problems for PML and 

PSL, we showed that the logics cannot be translated in fixed-variable fragments of FOL. 

Moreover, motivated by the techniques developed in the work of Areces et al. (2012), we 

enhanced PML and PSL with formulas from hybrid logic, and then explored complete Hilbert-

style proof systems for the resulting logics and the corresponding minimal logics. As we have 

seen, in line with the fact that hybrid PML is strictly stronger than the hybrid PSL, the proof 

system for the latter is also a ‘fragment’ of that for the former.

	 Before closing the paper, it is important to note that besides the poison game, there are 

many other graph games and logics having interesting interactions. For instance, van Benthem 

(2005); Aucher et al. (2015); Aucher et al. (2018) explore the sabotage games and the matching 

modal logic, in which a player can delete links in an arbitrary way. As illustrated in the works 
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of Gierasimczuk et al. (2009); Baltag et al. (2019); Baltag et al. (2022), the sabotage-style link 

modification is also useful in characterizing many features in learning/teaching scenarios. 

Closely relevant to this, Li (2020) studies the case that links are removed locally according to 

certain properties expressed explicitly in the language proposed. Moreover, Thompson (2020) 

studies a dynamic logic of local fact changes that captures a class of graph games in which 

properties of vertices might be affected by other vertices. In addition, Li et al. (2021; 2023) 

explore the games of hide and seek (also known as cops and robbers) with a logical approach, 

which can model pursuit-evasion environments with players having their goals entangled. See 

also the works of Sano et al. (2024) and Chen and Li (2024) for further developments of the 

logic for the hide and seek game, and the work of Li et al. (2025) for the imperfect information 

setting. We refer to van Benthem and Liu (2020) for a broad program on this topic and to van 

Benthem and Liu (2025) for the latest developments.

	 Finally, let us end the paper with several further directions deserving to be explored. A 

natural next step is to identify the complexity of the model-checking problems for HPSL and 

HPML. Close to this, it is also important to know the exact complexity of the satisfiability 

problems for PSL and PML and to identify some non-trivial decidable fragments of the two 

logics (including both syntactic fragments and the restrictions to graphs with certain relations, 

e.g., reflexive relations and the more complicated mereological structures (Varzi, 2019)). 

Another direction is to explore the expressive power of HPML and HPSL, at the levels of both 

models and frames. Moreover, hybrid logics match well with the tableau techniques (Bolander 

and Blackburn, 2007; Indrzejczak and Zawidzki, 2013), and it would be interesting to study 

the desired tableau calculi for these logics, referring to the calculi for both hybrid logic and 

memory logic (Areces et al., 2009). Also, memory logic is closely related to the sabotage 

modal logic (Aucher et al., 2018) and the class of relation-changing logics (Areces et al., 

2018), and in line with the strategy to axiomatize our logics and the standard memory logic 

(Areces et al., 2012), they are also axiomatized in the setting with hybrid formulas (Du and 

Chen, 2024; van Benthem et al., 2023). Notably, those logics develop various ways to update 

relations of models, which suggests that it would be interesting to consider other mechanisms 

of memorizing (as well as forgetting). In particular, it is meaningful to consider the memorizing 

and forgetting with an explicit definition, akin to the case of definable link deletion (Li, 2020), 

the logic of stepwise removal (van Benthem et al., 2022) and the dynamic-epistemic logic (van 

Ditmarsch et al., 2007; van Benthem, 2011), which would be useful in placing memory logic 

to a broader setting connecting different traditions.
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